

April 30, 2007

United States Environmental Protection Agency RGP – NOI Processing 1 Congress Street Boston, Massachusetts 02114-2023

Re:

Remediation General Permit (RGP) – Notice of Intent (NOI)

Future Hess Gasoline Station

946 Washington Street

South Attleboro, Massachusetts 02703-7870

MassDEP RTN 4-20382

To Whom It May Concern:

At the request of Hess Corporation (Hess), EnviroTrac Ltd (EnviroTrac) is submitting the attached RGP-NOI for the above-referenced location, referred to as the "site." The RGP-NOI form is included as **Attachment A**. The site is currently used for commercial and residential purposes. Temporary construction dewatering is necessary for excavations required for construction of a new gasoline station. Gauging of monitoring wells recently completed at the site revealed groundwater to be located at 4 to 7 feet below grade surface (bgs). Excavations to approximately 16 feet bgs will be required for installation of underground storage tanks (USTs). The locations of the site and discharge receiving waters are depicted on **Figure 1**. Also attached is a site plan (**Figure 2**), which depicts the existing site features and the catch basin which represents the proposed discharge point.

During the construction dewatering process, groundwater will be pumped from the excavation(s) into a fractionation tank for settlement, and then pumped through one of two bag filters before treatment via two 1,000-pound liquid phase carbon units. A schematic drawing is included in **Attachment B**. The treated effluent will be discharged via the catch basin on Mendon Road, adjacent to the property, which discharges to Cranberry Ponds, a Massachusetts Class B surface water body. The average discharge rate of treated groundwater is anticipated to be up to 25 gallons per minute. EnviroTrac has received authorization from the City of Attleboro Department of Public Works (DPW) to discharge to the catch basin.

On November 1, 2006 and April 30, 2007, groundwater samples were obtained from an existing monitoring well. Based on the analytical data, total petroleum hydrocarbons (TPH), gasoline-related volatile organic compounds, naphthalene, acetone, and metals (arsenic, trivalent chromium, copper, iron, lead, mercury, nickel, and zinc) were detected. Arsenic, chromium, copper, iron, lead, nickel, and zinc were reported at concentrations exceeding the applicable Effluent Limitations published in Appendix III of the RGP under the National Pollutant Discharge Elimination System (NPDES) for Discharges in Massachusetts. Copper, iron, lead and zinc exceeded the applicable Appendix IV limitations. The laboratory analytical reports supporting

this submittal are included in **Attachment C**, and the Appendix III/Appendix IV limitation comparisons are presented in **Table 1**.

The site is not located at or near any location specified in the RGP as subject to consultation with the U.S. Fisheries and Wildlife Service or the National Fisheries Service. According to the National Park Service's National Register Information System (NRIS) (http://www.nr.nps.gov/), the nearest listed historical sites are the John E. Adams House located at 11 Allen Avenue in Pawtucket, approximately one mile southwest of the site, and the Central Falls Mill Historic District, approximately one mile west-southwest of the site. The Massachusetts Historical Commission's Massachusetts Cultural Resource Information System (MACRIS) (http://www.sec.state.ma.us/mhc/) listed more than 100 sites in Attleboro. The nearest Massachusetts-listed site, 73 Gardner Avenue, is located approximately one-third mile northwest of the site. Based on the distances to the site, the discharge will not likely adversely affect the historical sites. Copies of the NRIS and MACRIS listings are included in Attachment D.

The excavation and dewatering will be conducted as a Release Abatement Measure (RAM) pursuant to the Massachusetts Contingency Plan (MCP) as set forth at 310 CMR 40.0400. Therefore, completion and submittal of State Application Form BRPWM 12 or payment of a state fee are not required.

If you have any questions or require further information, please contact the undersigned at (781) 769-5005.

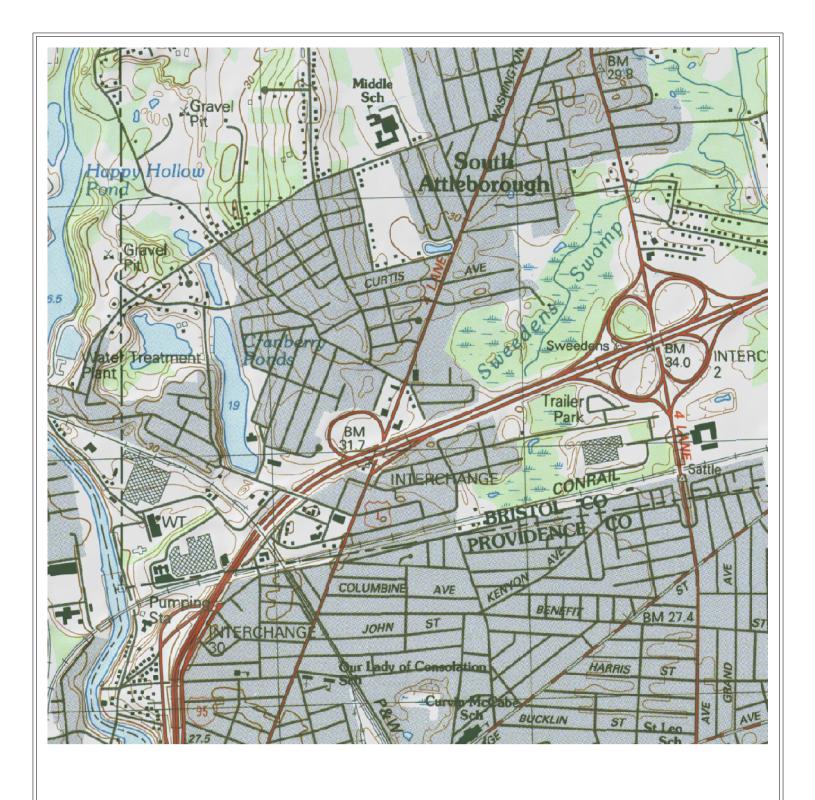
Sincerely,

EnviroTrac Ltd.

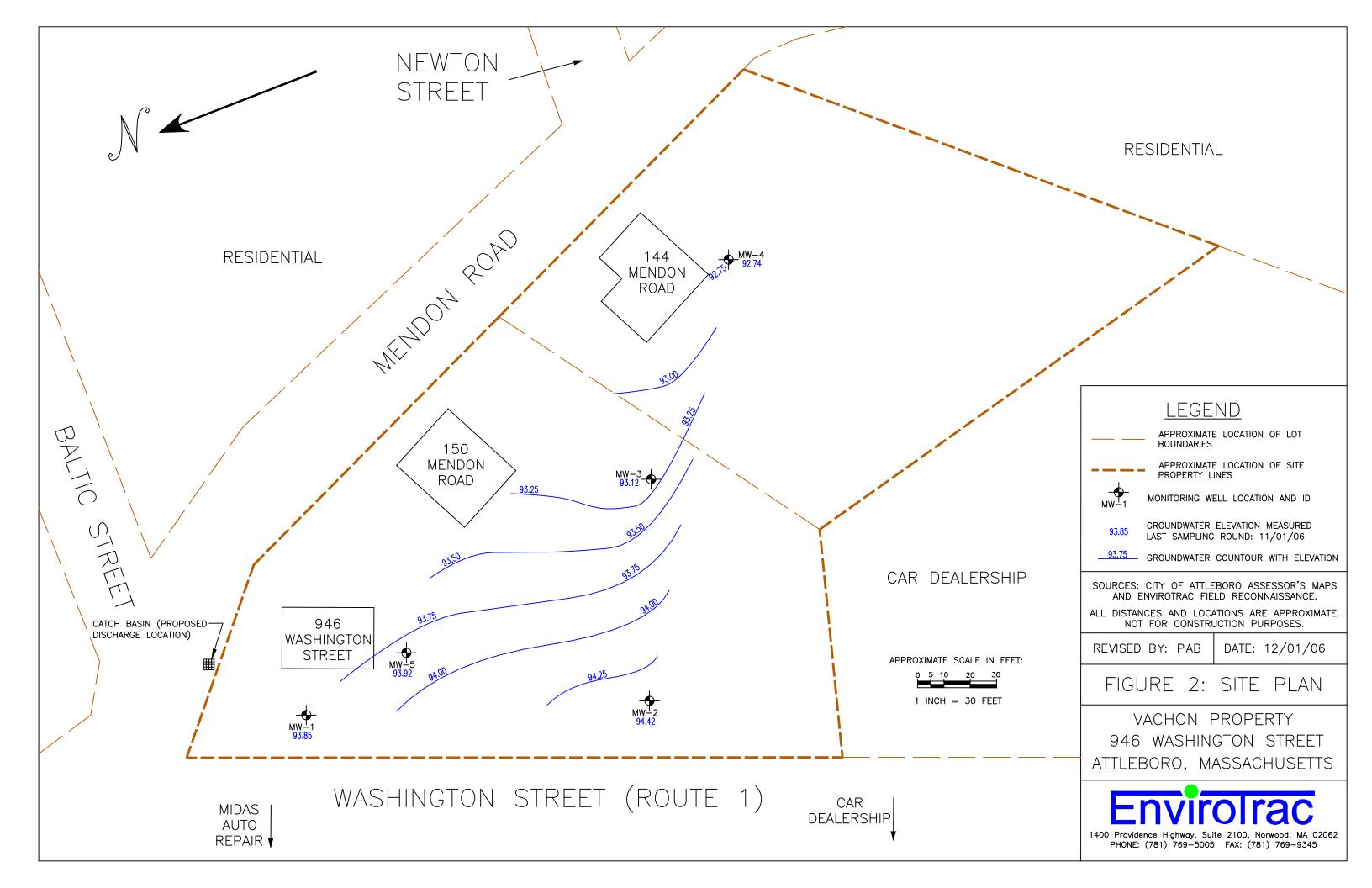
Patrick D. Corcoran, LSP Senior Project Manager

cc.:

MassDEP


Kevin J. Dumas, Mayor, City of Attleboro

M. Matri, Hess Corporation



FIGURES

UTM Coordinates: 4,641,479 m N 303,591 m E

TABLE

TABLE 1

GROUNDWATER METAL DILUTION COMPARISON

Future Hess Gasoline Station 946 Washington Street South Attleboro, Massachusetts

Detected Metal	Untreated Concentration (μg/L)	Appendix III Limitation Fresh Water (µg/L)	Untreated Meets App. III Limitation (Yes/No)	Appendix IV Limitation Fresh Water (µg/L)	Diluted Meets App. IV Limitation (Yes/No)
Arsenic	37	10	No	100	Yes
Chromium III	237	48.8	No	489	Yes
Copper	373	5.2	No	52	No
Iron	212,000	1,000	No	5,000	No
Lead	526	1.3	No	13	No
Mercury	1.5	0.9	No	2.3	Yes
Nickel	158	29.0	No	290	Yes
Zinc	1,030	66.6	No	666	No

NOTES:

μg/L = micrograms per liter

Untreated concentration = concentration in groundwater sampled obtained on 04/05/2007

Appendix III Limitation, Fresh Water = RGP Appendix III Effluent Limitations

Appendix IV Limitation, Fresh Water = RGP Appendix IV Effluent Limitations

Dilution Factor (DF) = 10 (assumed for discharge to pond)

ATTACHMENT A

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General site information. Please provide the following information about the site:

•	<i>C</i>							
a) Name of facility/site :			Facility/site address:					
Location of facility/site : longitude: latitude:	Facility SIC code	e(s):	Street:					
b) Name of facility/site owner:			Town:					
Email address of owner:		State:	Zip:	County:				
Telephone no.of facility/site owner :								
Fax no. of facility/site owner :			Owner is (check one): 1. Fed		ıl			
Address of owner (if different from site):		3. Private4. other, if	so, describe:					
Street:								
Town:		State:	Zip:	County:				
c) Legal name of operator :		Operator telep	ephone no:					
	,	Operator fax	no.: Operator email:					
Operator contact name and title:								
Address of operator (if different from owner):		Street:						
Town:	State:	Zip: County:						
d) Check "yes" or "no" for the following: 1. Has a prior NPDES permit exclusion been grante 2. Has a prior NPDES application (Form 1 & 2C) et 3. Is the discharge a "new discharge" as defined by 4. For sites in Massachusetts, is the discharge cover	ver been filed for t 40 CFR 122.2? Va	es No, if "yes," date a	-) <u> </u>				

generation of dis If "yes," please li 1. site identificati 2. permit or licen	charge? Yes list: ion # assigned by asse # assigned:	the state of NH or MA: name, location, and telephone in	1. multi-sector st 2. phase I or II co if Y, number: 3. individual NP	torm water gonstruction and DES permit	by any other EPA general permit? Y_storm water genera? Y, if lated permit? Y	N, in N	if Y, number:,		
2. Discharge in	nformation. Pleas	se provide information about the	discharge, (attachi	ing additional shee	ets as needed) including:			
a) Describe the d	lischarge activities	for which the owner/applicant is	s seeking coverage	:					
b) Provide the following information about each discharge:	1) Number of discharge points:	2) What is the maximum and a Average flow Is n For average flow, include the u	naximum flow a do	esign value? Y	N				
		ischarge within 100 feet: pt.1:loi long lat; pt.6:loi							
4) If hydrostatic	testing, total volun	ne of the discharge (gals):	5) Is the discharg	ge intermittent ping Yes		nal?			
c) Expected dates	s of discharge (mn	n/dd/yy): starten							
7	_	low schematic showing water flo buting flow from the operation,		points and re	eceiving waters(s).				

3. Contaminant information. In order to complete this section, the applicant will need to take a minimum of one sample of the untreated water and have it analyzed for **all** of the parameters listed in Appendix III. Historical data, (i.e., data taken no more than 2 years prior to the effective date of the permit) may be used if obtained pursuant to: i. Massachusetts' regulations 310 CMR 40.0000, the Massachusetts Contingency Plan ("Chapter 21E"); ii. New Hampshire's Title 50 RSA 485-A: Water Pollution and Waste Disposal or Title 50 RSA 485-C: Groundwater Protection Act; or iii. an EPA permit exclusion letter issued pursuant to 40 CFR 122.3, provided the data was analyzed with test methods that meet the requirements of this permit. Otherwise, a new sample shall be taken and analyzed.

a) Based on the analysis of the sample(s) of the untreated influent, the applicant must check the box of the sub-categories that the potential discharge falls within.

Gasoline Only	VOC Only	Primarily Metals	Urban Fill Sites	Contaminated Sumps	Mixed Contaminants	Aquifer Testing
Fuel Oils (and Other Oils) only	VOC with Other Contaminants	Petroleum with Other Contaminants	Listed Contaminated Sites	Contaminated Dredge Condensates	Hydrostatic Testing of Pipelines/Tanks	Well Development or Rehabilitation

b) Based on the analysis of the untreated influent, the applicant must indicate whether each listed chemical is **believed present** or **believed absent** in the potential discharge. Attach additional sheets as needed.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample	Analytical Method	Minimum Level (ML) of	Maximum daily	value	Avg. daily value	
			(1 min- imum)	(e.g., grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
1. Total Suspended Solids										
2. Total Residual Chlorine										
3. Total Petroleum Hydrocarbons										
4. Cyanide										
5. Benzene										
6. Toluene										
7. Ethylbenzene										
8. (m,p,o) Xylenes										
9. Total BTEX ⁴										

⁴BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method	Minimum Level (ML) of	Maximum daily	value	Avg. daily value	
			(1 min- imum)	grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
10. Ethylene Dibromide ⁵ (1,2- Dibromo-methane)										
11. Methyl-tert-Butyl Ether (MtBE)										
12. tert-Butyl Alcohol (TBA)										
13. tert-Amyl Methyl Ether (TAME)										
14. Naphthalene										
15. Carbon Tetra- chloride										
16. 1,4 Dichlorobenzene										
17. 1,2 Dichlorobenzene										
18. 1,3 Dichlorobenzene										
19. 1,1 Dichloroethane										
20. 1,2 Dichloroethane										
21. 1,1 Dichloroethylene										
22. cis-1,2 Dichloro- ethylene										
23. Dichloromethane (Methylene Chloride)										
24. Tetrachloroethylene										

 $^{^5\}mathrm{EDB}$ is a groundwater contaminant at fuel spill and pesticide application sites in New England.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of Test	Maximum daily v	alue	Avg. daily Value	2
			(1 min- imum)	grab)	(method #)	Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
25. 1,1,1 Trichloroethane										
26. 1,1,2 Trichloroethane										
27. Trichloroethylene										
28. Vinyl Chloride										
29. Acetone										
30. 1,4 Dioxane										
31. Total Phenols										
32. Pentachlorophenol										
33. Total Phthalates ⁶ (Phthalate esthers)										
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]										
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)										
a. Benzo(a) Anthracene										
b. Benzo(a) Pyrene										
c. Benzo(b)Fluoranthene										
d. Benzo(k) Fluoranthene										
e. Chrysene	_						_			_

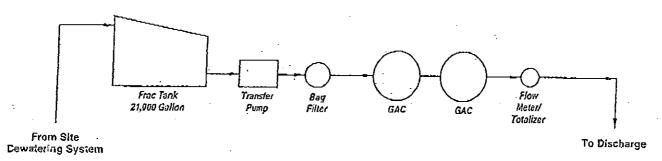
⁶The sum of individual phthalate compounds.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of	Maximum daily v	alue	Average daily value	
			(1 min- imum)	grab)	(method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
f. Dibenzo(a,h) anthracene										
g. Indeno(1,2,3-cd) Pyrene										
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)										
h. Acenaphthene										
i. Acenaphthylene										
j. Anthracene										
k. Benzo(ghi) Perylene										
l. Fluoranthene										
m. Fluorene										
n. Naphthalene-										
o. Phenanthrene										
p. Pyrene										
37. Total Polychlorinated Biphenyls (PCBs)										
38. Antimony										
39. Arsenic										
40. Cadmium										
41. Chromium III										
42. Chromium VI										

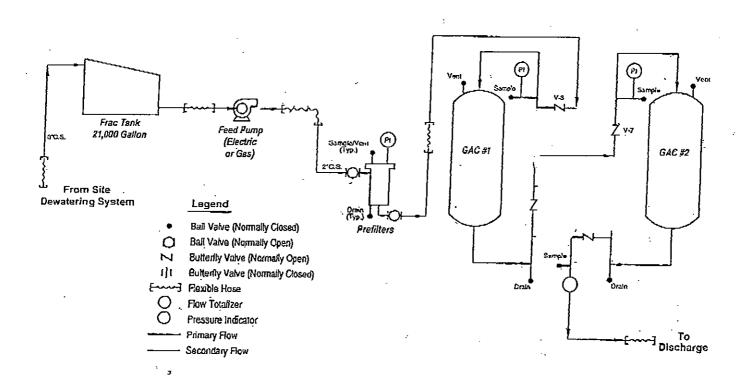
Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Method	Minimum Level (ML) of	Maximum daily value		Avg. daily value	
		(1 min- imum)	grab)		Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
			Absent Present Samples (1 min-	Absent Present Samples (1 min- grab)	Absent Present Samples Sample (e.g., grab) Method Used	Absent Present Samples (1 min- grab) Sample (e.g., Method Used Level (ML) of Test Method	Absent Present Samples (1 min- imum) Sample (e.g., grab) Sample (e.g., Method Used Test Method concentration	Absent Present Samples (1 min- impum) Sample (e.g., grab) Wethod Used Used Concentration Concentrati	Absent Present Samples (1 min- image) Sample (e.g., grab) Sample (e.g., Method Used (method #) Concentration Concentration (method #) Concentration Concentration (mass (kg) Concentration Concentration (mass (kg) Concentra

c) For discharges where **metals** are believed present, please fill out the following:

Step 1: Do any of the metals in the influent have a reasonable potential to exceed the effluent limits in Appendix III (i.e., the limits set at zero to five dilutions)? YN	If yes, which metals?
Step 2: For any metals which have reasonable potential to exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c) (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metals: DF:	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? YN If "Yes," list which metals:


Treatment system information. Please describe the treatment system using separate sheets as necessary, including:								
a) A description of the treatment system, including a schematic of the proposed or existing treatment system:								
b) Identify each applicable	Frac. tank	Air stripper	Oil/water sep	parator	Equalization tanks	Bag filter	GAC filter	
treatment unit (check all that apply):	Chlorination	Dechlorination	Other (please	describe):				
	c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge Maximum flow rate of treatment system Design flow rate of treatment system							
d) A description of chemical a	additives being u	sed or planned to	be used (attach MSI	OS sheets):				
5. Receiving surface water(s).	Please provide	information about	the receiving water	(s), using separate she	ets as necessary:			
a) Identify the discharge pathway: Direct Within facility_ Storm drain River/brook Wetlands Other (describe):								
b) Provide a narrative descript	tion of the discha	arge pathway, incl	uding the name(s) or	f the receiving waters:				
 For multiple discharges, nu For indirect dischargers, inc The map should also include t 	c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.							
d) Provide the state water quality classification of the receiving water,								
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving watercfs Please attach any calculation sheets used to support stream flow and dilution calculations.								
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Yes No If yes, for which pollutant(s)? Is there a TMDL? Yes No If yes, for which pollutant(s)?								

6. Results of Consultation with Federal Services: Please provide the following information according to requirements of Part I.B.4 and Appendices II and VII.
a) Are any listed threatened or endangered species, or designated critical habitat, in proximity to the discharge? Yes No Has any consultation with the federal services been completed? No or is consultation underway? No No What were the results of the consultation with the U.S. Fish and Wildlife Service and/or National Marine Fisheries Service (check one): a "no jeopardy" opinion? or written concurrence on a finding that the discharges are not likely to adversely affect any endangered species or critical habitat?
b) Are any historic properties listed or eligible for listing on the National Register of Historic Places located on the facility or site or in proximity to the discharge? Yes No ✓ Have any state or tribal historic preservation officer been consulted in this determination (Massachusetts only)? Yes No ✓
7. Supplemental information. :
Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.
8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification: I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.
Facility/Site Name: Future Hess gasoline station, 946 Washington St., South Attleboro, MA
Operator signature:
Title: Patrick D. Corcoran, LSP; Senior Project Manager
Date: 04/30/2007


ATTACHMENT B

Process Flow Diagram Dewatering Treatment System (Typical)

ATTACHMENT C

REPORT OF ANALYTICAL RESULTS

NETLAB Case Number R1103-09

Revised Report (Revision 2)

Prepared for:

Attn: Brian Snow Envirotrac Ltd. 1400 Providence Hwy, Suite 2100 Norwood, MA 02062

Report Date: April 26, 2007

Lab # RI010

Electronic Copy

NEW ENGLAND TESTING LABORATORY, INC.

1254 Douglas Avenue, North Providence, RI 02904 (401) 353-3420

	ANALYTICAL METHOD REPORT CERTIFICATION FORM									
Labora	atory Name: New E	ngland Testing	Laboratory, Inc.		Proje	ct #:				
Projec	t Location: Hess ES	SA - Vachon Pro	operties		RTN	·:				
This fo	This form provides certifications for the following data set: R1103-09									
Sampl	Sample Matrices: Groundwater (X) Soil/Sediment () Drinking Water () Other:									
		8260B (X)	8151A ()	8330 ()	601	I0B()	74	70A/1	IA()	
	SW-846	8270C ()	8081A ()	VPH (X)	60	20 ()	901	14M ²	()	
M	ethods Used	8082 (X)	8021B ()	EPH (X)	700	0 S ³ ()	Oth	ner: (>	()	
		2 M – SW-846 M	racking Number (RT lethod 9014 or MAD lethods 7000 Series	EP Physiologi			(PAC)	Method	d	
	An affirmative resp	onse to questio	ns A, B, and C is	required fo	r "Presum	ptive Cert	ainty'	" statu	ıs	
Α	Were all samples red that described on the		•			Yes	(X)	No ¹ (()	
	Were all QA/QC pro- included in this repo	•	•	•						
В	discuss in a narrative standards or guidelin	e QC data that di	-			Yes	(X)	No ¹ (()	
	Does the analytical of		•	-						
С	for "Presumptive Ce document CAM VII A	-				Yes	(Y)	No ¹ (()	
	for the Acquisition ar	-	-	Jonitroi Galae	5111103			able (
D	VPH and EPH Meth without significant m					Yes	(X)	No ¹ (()	
	A response to d	questions E and	F below is requi	red for "Pre	sumptive	Certainty"	statu	ıs		
	Were all QC perform		and recommendat	ions for the				1		
E	specified methods a	chieved?				Yes	(X)	No ¹ (()	
F	Were results for all a method(s) reported?	-	ounds/elements for	r the specifie	ed	Yes	(X)	No ¹ (()	
	¹ All NO answers	must be address	sed in an attached	Environmen	tal Laborat	ory case na	arrativ	e.		
inqu	I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.									
	Signature:	BullOlisas	<u> </u>	Position:	Laborato	ry Director	•			
Pri	Printed Name: Richard Warila Date: 4/26/2007									

	ANALYTICAL METHOD REPORT CERTIFICATION FORM								
Labora	atory Name: New Er	ngland Testing	Laboratory, Inc.		Proje	ect #:			
Projec	t Location: Hess ES	A Vachon Prop	perty		RTN	¹ :			
This fo	This form provides certifications for the following data set: R1103-09								
Sampl	e Matrices: Groun	ndwater (X) S	oil/Sediment()	Drinkir	ng Water () Other:			
) 60	10B (X)	747	70A/1	A (X)			
	SW-846	8270C ()	8081A ()	VPH () 60	6020 () 9014M ²			()
M	ethods Used	8082 ()	8021B ()	EPH (,	$0 S^{3}()$	Oth	ner: ()
		2 M – SW-846 M	racking Number (RTI lethod 9014 or MADI ethods 7000 Series	EP Physiolo	gically Availa		(PAC)	Method	
	An affirmative resp						ainty'	' statu	s
Α	Were all samples red that described on the	-	<u>-</u>			Yes	(X)	No ¹ ()
В	Were all QA/QC procedures required for the specified analytical method(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines? Were all QA/QC procedures required for the specified analytical method(s) Yes (X) No¹ ())	
	Does the analytical d		· · · · · · · · · · · · · · · · · · ·	-					
С	for "Presumptive Cer document CAM VII A					Yes	(X)	No ¹ (\
C	for the Acquisition ar	-	=	ontrol out	dominos			able (,
D	VPH and EPH Meth without significant me					Yes	()	No ¹ ()
	A response to c	questions E and	F below is requi	red for "P	resumptive	Certainty"	statu	s	
E	Were all QC perform specified methods ac		and recommendati	ions for the	Э	Yes	(X)	No ¹ ()
	Were results for all a	nalyte-list compo	ounds/elements for	the speci	fied				
F	method(s) reported?					Yes	(X)	No ¹ ()
	¹ All NO answers	must be address	ed in an attached	Environme	ental Labora	tory case na	arrativ	e.	
inqu	I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.								
	Signature:	di dyono-	F	Position:	Director, Ir	norganics			
Pri	Printed Name: Jodi Lyons Date: 11/10/2006								

STATEMENTS/CERTIFICATIONS REQUIRED BY THE NATIONAL ENVIRONMENTAL LABORATORY APPROVAL CONFERENCE (NELAC)

New England Testing Laboratory is certified under the National Environmental Laboratory Approval Program (NELAP). This certification requires the following statements and certifications be included in our report.

This report shall not be reproduced, except in full, without written approval of the laboratory.

New England Testing certifies that the test results contained within this report meet all NELAC requirements except as detailed in the Case Narrative section of this report.

SAMPLES SUBMITTED and REQUEST FOR ANALYSIS:

The samples listed in Table I were submitted to New England Testing Laboratory on November 3, 2006. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. The case number for this sample submission is R1103-09.

Custody records are included in this report.

Site: Hess ESA Vachon Property

TABLE I, Samples Submitted

Sample ID	Date Sampled	Matrix	Analysis Requested
MW-1	11/1/06	Water	Table II, III
MW-2	11/1/06	Water	Table II, III
MW-3	11/1/06	Water	Table II, III
MW-4	11/1/06	Water	Table II

TABLE II, Analysis and Methods

ANALYSIS	PREPARATION METHOD	DETERMINATIVE METHOD
VPH	NA	*
EPH	NA	**

TABLE III, Analysis and Methods

ANALYSIS	PREPARATION METHOD	DETERMINATIVE METHOD
Volatile Organic Compounds	5030B	8260B
Ethanol	5030B	8260B
PCBs	3510C	8082
Total Metals		
Arsenic	3010A	6010B
Barium	3010A	6010B
Cadmium	3010A	6010B
Chromium	3010A	6010B
Lead	3010A	6010B
Mercury	NA	7470A
Selenium	7760	6010B
Silver	3010A	6010B

These methods are documented in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, USEPA.

^{*}Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MADEP.

^{**}Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MADEP.

CASE NARRATIVE:

Sample Receipt:

No sample for ms/msd/duplicate analysis was supplied. No trip blank or field blank was supplied unless it was identified in such a manner as to be un-interpretable by the laboratory. (This does not qualify the analytical results but does prevent conducting these SW-846 {Chapter 1, Section 3.4} QA Audits.)

The samples were all appropriately cooled and preserved upon receipt.

The samples were received in the appropriate containers.

The chain of custody was adequately completed and corresponded to the samples submitted.

Metals:

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

Volatile Organics:

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

PCBs:

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

VPH:

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria

EPH:

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Ethanol:

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration and method blank were within method specified quality control criteria. No anomalies were encountered during the analysis.

Sample Results

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Metals Analysis Department certifies that the results included in this section have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

New England Testing Laboratory, Inc.

Case Number: R1103-09
Sample ID: MW-1
Date collected: 11/01/06
Matrix WATER
Sample Type: Total

Analyst AR/MM

	CAS	Preparative	Analytical		Reporting	Detection		Date of	Date
Parameter	Number	Method	Method	Result	Limit	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3010A	6010B	0.03	0.01	0.01	mg/l	11/6/03	11/7/06
Barium	7440-39-3	3010A	6010B	0.131	0.005	0.005	mg/l	11/6/03	11/7/06
Cadmium	7440-43-9	3010A	6010B	ND	0.004	0.004	mg/l	11/6/03	11/7/06
Chromium	7440-47-3	3010A	6010B	ND	0.005	0.005	mg/l	11/6/03	11/7/06
Lead	7439-92-1	3010A	6010B	ND	0.005	0.005	mg/l	11/6/03	11/7/06
Mercury	7439-97-6	NA	7470A	ND	0.0002	0.0002	mg/l	11/6/03	11/7/06
Selenium	7782-49-2	3010A	6010B	0.04	0.01	0.01	mg/l	11/6/03	11/7/06
Silver	7440-22-4	7760	6010B	ND	0.005	0.005	mg/l	11/6/03	11/7/06

Case Number: R1103-09
Sample ID: MW-2
Date collected: 11/01/06
Matrix WATER
Sample Type: Total

Analyst AR/MM

	CAS	Preparative	Analytical		Reporting	Detection		Date of	Date
Parameter	Number	Method	Method	Result	Limit	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3010A	6010B	0.03	0.01	0.01	mg/l	11/6/03	11/7/06
Barium	7440-39-3	3010A	6010B	0.793	0.005	0.005	mg/l	11/6/03	11/7/06
Cadmium	7440-43-9	3010A	6010B	ND	0.004	0.004	mg/l	11/6/03	11/7/06
Chromium	7440-47-3	3010A	6010B	ND	0.005	0.005	mg/l	11/6/03	11/7/06
Lead	7439-92-1	3010A	6010B	ND	0.005	0.005	mg/l	11/6/03	11/7/06
Mercury	7439-97-6	NA	7470A	ND	0.0002	0.0002	mg/l	11/6/03	11/7/06
Selenium	7782-49-2	3010A	6010B	0.04	0.01	0.01	mg/l	11/6/03	11/7/06
Silver	7440-22-4	7760	6010B	ND	0.005	0.005	mg/l	11/6/03	11/7/06

Case Number: R1103-09
Sample ID: MW-3
Date collected: 11/01/06
Matrix WATER
Sample Type: Total

Analyst AR/MM

	CAS	Preparative	Analytical		Reporting	Detection		Date of	Date
Parameter	Number	Method	Method	Result	Limit	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3010A	6010B	0.01	0.01	0.01	mg/l	11/6/03	11/7/06
Barium	7440-39-3	3010A	6010B	0.097	0.005	0.005	mg/l	11/6/03	11/7/06
Cadmium	7440-43-9	3010A	6010B	ND	0.004	0.004	mg/l	11/6/03	11/7/06
Chromium	7440-47-3	3010A	6010B	ND	0.005	0.005	mg/l	11/6/03	11/7/06
Lead	7439-92-1	3010A	6010B	ND	0.005	0.005	mg/l	11/6/03	11/7/06
Mercury	7439-97-6	NA	7470A	ND	0.0002	0.0002	mg/l	11/6/03	11/7/06
Selenium	7782-49-2	3010A	6010B	0.02	0.01	0.01	mg/l	11/6/03	11/7/06
Silver	7440-22-4	7760	6010B	ND	0.005	0.005	mg/l	11/6/03	11/7/06

Sample ID: METHOD BLANK

Matrix WATER Analyst AR/MM

Sample Type: Preparation Blank

	CAS	Preparative	Analytical		Reporting	Detection		Date of	Date
Parameter	Number	Method	Method	Result	Limit	Limit	Units	Preparation	Analyzed
Arsenic	7440-38-2	3010A	6010B	ND	0.01	0.01	mg/l	11/6/06	11/7/06
Barium	7440-39-3	3010A	6010B	ND	0.005	0.005	mg/l	11/6/06	11/7/06
Cadmium	7440-43-9	3010A	6010B	ND	0.004	0.004	mg/l	11/6/06	11/7/06
Chromium	7440-47-3	3010A	6010B	ND	0.005	0.005	mg/l	11/6/06	11/7/06
Lead	7439-92-1	3010A	6010B	ND	0.005	0.005	mg/l	11/6/06	11/7/06
Mercury	7439-97-6	NA	7470A	ND	0.0002	0.0002	mg/l	11/6/06	11/7/06
Selenium	7782-49-2	3010A	6010B	ND	0.01	0.01	mg/l	11/6/06	11/7/06
Silver	7440-22-4	7760	6010B	ND	0.005	0.005	mg/l	11/6/06	11/7/06

LABORATORY CONTROL SAMPLE RECOVERY

					rnal			
Parameter	True Value	Result	Units	Recovery, %	LCL, %	UCL, %	Date Analyzed	
Arsenic	1	0.955	mg/l	95.5	79	119	11/7/06	
Barium	1	0.989	mg/l	98.9	92	112	11/7/06	
Cadmium	1	0.974	mg/l	97.4	88	112	11/7/06	
Chromium	1	0.926	mg/l	92.6	83	112	11/7/06	
Lead	1	0.944	mg/l	94.4	85	113	11/7/06	
Mercury	0.001	0.00102	mg/l	102	89	114	11/7/06	
Selenium	1	0.897	mg/l	89.7	81	112	11/7/06	
Silver	1	0.929	mg/l	92.9	74	119	11/7/06	

New England Testing Laboratory, Inc.

RESULTS: PCBs

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Sample: MW-1		Analyst's Initials: DC
Case No. R1103-09		
Date Collected: 11/1/06		
Sample Matrix: Water		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3510C	11/7/06	11/8/06
Analytical Method: EPA 8082		
Compound	Concentration	Reporting Limit
	ug/l (ppb)	
Aroclor-1221	N.D.	0.2
Aroclor-1232	N.D.	0.2
Aroclor-1016/1242	N.D.	0.2
Aroclor -1248	N.D.	0.2
Aroclor -1254	N.D.	0.2
Aroclor -1260	N.D.	0.2
Aroclor -1262	N.D.	0.2
Aroclor -1268	N.D.	0.2
Surrogates:		
Compound	% Recovery	Limits
TCMX	103	25-141
DCBP	115	41-156

Sample: MW-2		Analyst's Initials: DC
Case No. R1103-09		
Date Collected: 11/1/06		
Sample Matrix: Water		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3510C	11/7/06	11/8/06
Analytical Method: EPA 8082		
Compound	Concentration ug/l (ppb)	Reporting Limit
Aroclor-1221	N.D.	0.2
Aroclor-1232	N.D.	0.2
Aroclor-1016/1242	N.D.	0.2
Aroclor -1248	N.D.	0.2
Aroclor -1254	N.D.	0.2
Aroclor -1260	N.D.	0.2
Aroclor -1262	N.D.	0.2
Aroclor -1268	N.D.	0.2
Surrogates:		
Compound	% Recovery	Limits
TCMX	90	25-141
DCBP	113	41-156

Sample: MW-3		Analyst's Initials: DC
Case No. R1103-09		
Date Collected: 11/1/06		
Sample Matrix: Water		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3510C	11/7/06	11/8/06
Analytical Method: EPA 8082		
Compound	Concentration ug/l (ppb)	Reporting Limit
Aroclor-1221	N.D.	0.2
Aroclor-1232	N.D.	0.2
Aroclor-1016/1242	N.D.	0.2
Aroclor -1248	N.D.	0.2
Aroclor -1254	N.D.	0.2
Aroclor -1260	N.D.	0.2
Aroclor -1262	N.D.	0.2
Aroclor -1268	N.D.	0.2
Surrogates:		
Compound	% Recovery	Limits
TCMX	88	25-141
DCBP	108	41-156

Sample: Method Blank		Analyst's Initials: DC
Case No. R1103-09		
Date Collected: NA		
Sample Matrix: Water		
Subject: PCBs	Date Extracted	Date Analyzed
Prep Method: EPA 3510C	11/7/06	11/8/06
Analytical Method: EPA 8082		
Compound	Concentration ug/l (ppb)	Reporting Limit
Aroclor-1221	N.D.	0.2
Aroclor-1232	N.D.	0.2
Aroclor-1016/1242	N.D.	0.2
Aroclor -1248	N.D.	0.2
Aroclor -1254	N.D.	0.2
Aroclor -1260	N.D.	0.2
Aroclor -1262	N.D.	0.2
Aroclor -1268	N.D.	0.2
Surrogates:		
Compound	% Recovery	Limits
TCMX	80	25-141
DCBP	105	41-156

PCB Laboratory Control Spike

Sample Matrix: Soil			Analyst:	DC
Subject: PCB	Date Extracted			Date Analyzed
Prep Method: EPA 3541	11/7/06			11/7/06
Analytical Method: EPA 8082				
Compound	Amount Spiked mg/kg	Result mg/kg	Recovery %	Recovery Limits
Aroclor 1254	0.500	0.433	87	40-140
Surrogates:				
Compound	% Recovery	Limits		
TCMX	90	43-125		
DCBP	103	41-127		

RESULTS: ETHANOL

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Case No. R1103-09

Ethanol

Sample	Result, mg/L	Reporting Limit, mg/L	Date Analyzed
Method Blank	N.D.	1.00	11/06/2006
MW-1	N.D.	1.00	11/06/2006
MW-2	N.D.	1.00	11/06/2006
MW-3	N.D.	1.00	11/06/2006

N.D. = Not Detected

RESULTS: VOLATILE ORGANIC COMPOUNDS

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

Client Name: Envirotrac Ltd. Case No.: R1103-09 Method: 8260 Lab Sample ID: MW-1 Matrix: (soil/water) WATER Lab File ID: C110913.D (g/ml) ML Sample wt/vol: 5.0 Date Sampled: 11/1/2006 % Moisture Date Analyzed: 11/9/2006 Soil Extract Volume: ____ (uL) Dilution Factor: 1.0 Analyst's Initials: rcm Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS: _	ug/L	Q
75-01-4	Vinyl Chloride		1.0	U
74-83-9	Bromomethane		1.0	U
75-00-3	Chloroethane		1.0	U
67-64-1	Acetone		9.6	
75-35-4	1,1-Dichloroethene		1.0	U
75-15-0	Carbon Disulfide		5.0	U
75-09-2	Methylene Chloride		10	U
1634-04-4	tert-Butyl methyl ether		1.0	U
156-60-5	trans-1,2 Dichloroethene		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
78-93-3	2-Butanone		5.0	U
594-20-7	2,2-Dichloropropane		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.0	U
67-66-3	Chloroform		1.0	U
74-97-5	Bromochloromethane		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
563-58-6	1,1-Dichloropropene		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
71-43-2	Benzene		5.0	
107-06-2	1,2-Dichloroethane		1.0	U
79-01-6	Trichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
75-27-4	Bromodichloromethane		1.0	U
74-95-3	Dibromomethane		1.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
106-93-4	Ethylene Dibromide		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
108-88-3	Toluene		2.1	
10061-02-6	Trans-1,3-Dichloropropene		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
591-78-6	2-Hexanone		5.0	Ü
127-18-4	Tetrachloroethene		1.0	Ü
124-48-1	Chlorodibromomethane		1.0	Ü
108-90-7	Chlorobenzene		5.0	Ü
630-20-6	1,1,1,2-Tetrachloroethane		1.0	Ü

Client Name: Envirotrac Ltd. Case No.: R1103-09 Method: 8260 Lab Sample ID: MW-1 Matrix: (soil/water) WATER Lab File ID: C110913.D (g/ml) ML Sample wt/vol: 5.0 Date Sampled: 11/1/2006 % Moisture Date Analyzed: 11/9/2006 Soil Extract Volume: ____ (uL) Dilution Factor: 1.0 Analyst's Initials: rcm Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
100-41-4	Ethylbenzene	9.7	
1330-20-7	m & p-Xylene	29	
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
98-82-8	Isopropylbenzene	14	
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
108-86-1	Bromobenzene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
103-65-1	n-Propylbenzene	18	
108-67-8	1,3,5-Trimethylbenzene	29	
106-43-4	4-Chlorotoluene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	100	
135-98-8	sec-Butylbenzene	2.9	
99-87-6	p-Isopropyltoluene	1.4	
75-87-3	Chloromethane	1.0	U
75-65-0	tert butyl alcohol	5.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
109-99-9	Tetrahydrofuran	5.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
60-29-7	Diethyl Ether	5.0	U
104-51-8	n-Butylbenzene	3.1	
95-50-1	1,2-Dichlorobenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	2.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
91-20-3	Naphthalene	7.0	
87-61-6	1,2,3-Trichlorobenzene	1.0	U

Case No.: R1103-09	Client Name:	Envirotrac Ltd.	
Method: 8260	Lab Sample ID:	MW-2	
Matrix: (soil/water) WATER	Lab File ID:	C110912.D	
Sample wt/vol: 5.0 (g/ml) ML	Date Sampled:	11/1/2006	
% Moisture	Date Analyzed:	11/9/2006	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: rcm	Soil Aliquot Volu	ume:	(uL)

CAS NO.	COMPOUND	UNITS: _	ug/L	Q
75-01-4	Vinyl Chloride		1.0	U
74-83-9	Bromomethane		1.0	U
75-00-3	Chloroethane		1.0	U
67-64-1	Acetone		5.0	U
75-35-4	1,1-Dichloroethene		1.0	U
75-15-0	Carbon Disulfide		5.0	U
75-09-2	Methylene Chloride		10	U
1634-04-4	tert-Butyl methyl ether		1.0	U
156-60-5	trans-1,2 Dichloroethene		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
78-93-3	2-Butanone		5.0	U
594-20-7	2,2-Dichloropropane		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.0	U
67-66-3	Chloroform		1.0	U
74-97-5	Bromochloromethane		1.0	Ü
71-55-6	1,1,1-Trichloroethane		1.0	Ü
563-58-6	1,1-Dichloropropene		1.0	Ü
56-23-5	Carbon Tetrachloride		1.0	Ü
71-43-2	Benzene		1.0	Ü
107-06-2	1,2-Dichloroethane		1.0	U
79-01-6	Trichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
75-27-4	Bromodichloromethane		1.0	U
74-95-3	Dibromomethane		1.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
106-93-4	Ethylene Dibromide		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
108-88-3	Toluene		1.0	U
10061-02-6	Trans-1,3-Dichloropropene		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	Ū
591-78-6	2-Hexanone		5.0	U
127-18-4	Tetrachloroethene		1.0	U
124-48-1	Chlorodibromomethane		1.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		1.0	Ü

Client Name: Envirotrac Ltd. Case No.: R1103-09 Method: 8260 Lab Sample ID: MW-2 Matrix: (soil/water) WATER Lab File ID: C110912.D (g/ml) ML Sample wt/vol: 5.0 Date Sampled: 11/1/2006 % Moisture Date Analyzed: 11/9/2006 Soil Extract Volume: ____ ____ (uL) Dilution Factor: 1.0 Analyst's Initials: rcm Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
100-41-4	Ethylbenzene	1.0	U
1330-20-7	m & p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
98-82-8	Isopropylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
108-86-1	Bromobenzene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
99-87-6	p-Isopropyltoluene	1.0	U
75-87-3	Chloromethane	1.0	U
75-65-0	tert butyl alcohol	5.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
109-99-9	Tetrahydrofuran	5.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
60-29-7	Diethyl Ether	5.0	U
104-51-8	n-Butylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	2.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
91-20-3	Naphthalene	2.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

Case No.: R1103-09	Client Name:	Envirotrac Ltd.	
Method: 8260	Lab Sample ID:	MW-3	
Matrix: (soil/water) WATER	Lab File ID:	C110911.D	
Sample wt/vol: <u>5.0</u> (g/ml) <u>ML</u>	Date Sampled:	11/1/2006	
% Moisture	Date Analyzed:	11/9/2006	
Soil Extract Volume: (uL)	Dilution Factor:	1.0	
Analyst's Initials: rcm	Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	UNITS: _	ug/L	Q
75-01-4	Vinyl Chloride		1.0	U
74-83-9	Bromomethane		1.0	U
75-00-3	Chloroethane		1.0	U
67-64-1	Acetone		5.0	U
75-35-4	1,1-Dichloroethene		1.0	U
75-15-0	Carbon Disulfide		5.0	U
75-09-2	Methylene Chloride		10	U
1634-04-4	tert-Butyl methyl ether		1.0	U
156-60-5	trans-1,2 Dichloroethene		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
78-93-3	2-Butanone		5.0	U
594-20-7	2,2-Dichloropropane		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.0	U
67-66-3	Chloroform		1.0	U
74-97-5	Bromochloromethane		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
563-58-6	1,1-Dichloropropene		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
71-43-2	Benzene		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
79-01-6	Trichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
75-27-4	Bromodichloromethane		1.0	U
74-95-3	Dibromomethane		1.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
106-93-4	Ethylene Dibromide		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
108-88-3	Toluene		1.0	U
10061-02-6	Trans-1,3-Dichloropropene		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
591-78-6	2-Hexanone		5.0	U
127-18-4	Tetrachloroethene		1.0	U
124-48-1	Chlorodibromomethane		1.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		1.0	U

Client Name: Envirotrac Ltd. Case No.: R1103-09 Method: 8260 Lab Sample ID: MW-3 Matrix: (soil/water) WATER Lab File ID: C110911.D (g/ml) ML Sample wt/vol: 5.0 Date Sampled: 11/1/2006 % Moisture Date Analyzed: 11/9/2006 Soil Extract Volume: ____ ____ (uL) Dilution Factor: 1.0 Analyst's Initials: rcm Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
100-41-4	Ethylbenzene	1.0	U
1330-20-7	m & p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
98-82-8	Isopropylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
108-86-1	Bromobenzene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
99-87-6	p-Isopropyltoluene	1.0	U
75-87-3	Chloromethane	1.0	U
75-65-0	tert butyl alcohol	5.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
109-99-9	Tetrahydrofuran	5.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
60-29-7	Diethyl Ether	5.0	U
104-51-8	n-Butylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	2.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
91-20-3	Naphthalene	2.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

Client Name: Envirotrac Ltd. Case No.: R1103-09 Method: 8260 Lab Sample ID: VBLK061109 Matrix: (soil/water) WATER Lab File ID: C110905.D (g/ml) ML Sample wt/vol: 5.0 Date Sampled: 11/1/2006 % Moisture Date Analyzed: 11/9/2006 Soil Extract Volume: ____ (uL) Dilution Factor: 1.0 Analyst's Initials: rcm Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
75-01-4	Vinyl Chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
67-64-1	Acetone	5.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-15-0	Carbon Disulfide	5.0	U
75-09-2	Methylene Chloride	10	U
1634-04-4	tert-Butyl methyl ether	1.0	U
156-60-5	trans-1,2 Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
78-93-3	2-Butanone	5.0	U
594-20-7	2,2-Dichloropropane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
74-95-3	Dibromomethane	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
106-93-4	Ethylene Dibromide	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
108-88-3	Toluene	1.0	U
10061-02-6	Trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
591-78-6	2-Hexanone	5.0	U
127-18-4	Tetrachloroethene	1.0	U
124-48-1	Chlorodibromomethane	1.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U

Client Name: Envirotrac Ltd. Case No.: R1103-09 Method: 8260 Lab Sample ID: VBLK061109 Matrix: (soil/water) WATER Lab File ID: C110905.D (g/ml) ML Sample wt/vol: 5.0 Date Sampled: 11/1/2006 % Moisture Date Analyzed: 11/9/2006 Soil Extract Volume: ____ (uL) Dilution Factor: 1.0 Analyst's Initials: rcm Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	UNITS: ug/L	Q
100-41-4	Ethylbenzene	1.0	U
1330-20-7	m & p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
98-82-8	Isopropylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
108-86-1	Bromobenzene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
99-87-6	p-Isopropyltoluene	1.0	U
75-87-3	Chloromethane	1.0	U
75-65-0	tert butyl alcohol	5.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
109-99-9	Tetrahydrofuran	5.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
60-29-7	Diethyl Ether	5.0	U
104-51-8	n-Butylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	2.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
91-20-3	Naphthalene	2.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:New England Testing LabContract:Hess ESA VachoLab Code:RI010Case No.:R1103-09SAS No.:SDG No.:Envirotrac

	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	#	#	#	OUT
01	VLCS061109	105	96	102	0
02	VBLK061109	100	97	102	0
03	MW-3	100	93	101	0
04	MW-2	101	117	100	0
05	MW-1	103	99	99	0

QC LIMITS

SMC1	=	4-Bromofluorobenzene	(70-130)
SMC2	=	Toluene-D8	(70-130)
SMC3	=	1.2-Dichloroethane-D4	(70-130)

Column to be used to flag recovery values

New England Testing Laboratory, Inc.

page 1 of 1

FORM II VOA-1

^{*} Values outside of contract required QC limits

D System Monitoring Compound diluted out

Volatile Organics Laboratory Control Spike

Date Analyzed: 11/9/06 Sample ID: VLCS061109

	Spike	Spike	Recovery,	Lower Control	Upper Control
Compound	Added (ug/L)	Result (ug/L)	%	Limit, %	Limit, %
1,1-Dichloroethene	50	64	127	77	137
Benzene	50	46	93	75	117
Trichloroethene	50	47	94	65	141
Toluene	50	49	98	74	119
Chlorobenzene	50	48	95	74	115

Case No. R1103-09 Sample: MW-1 Date Analyzed: 11/9/06

	Concentration	Reporting
Compound	ug/L (ppb)	<u>Limit</u>
tert-Butyl Alcohol	N.D.	5
tert-Amyl Methyl Ether	150	5
1,4-Dioxane	N.D.	50

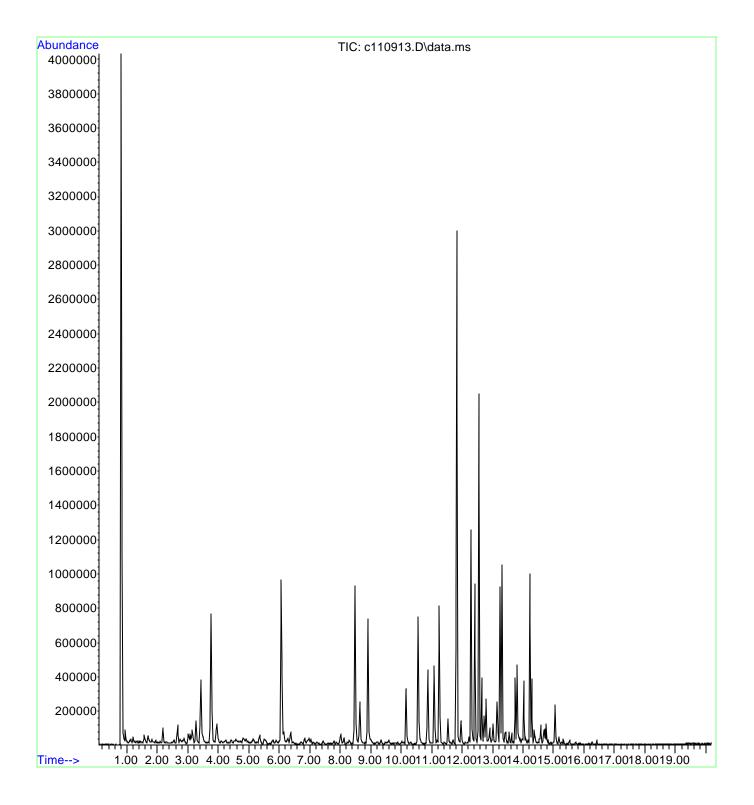
Sample: MW-2 Case No. R1103-09 Date Analyzed: 11/9/06

<u>Compound</u>	Concentration ug/L (ppb)	Reporting <u>Limit</u>
tert-Butyl Alcohol	N.D.	5
tert-Amyl Methyl Ether	N.D.	5
1,4-Dioxane	N.D.	50

Sample: MW-3 Case No. R1103-09 Date Analyzed: 11/9/06

Compound	Concentration ug/L (ppb)	Reporting <u>Limit</u>
tert-Butyl Alcohol	N.D.	5
tert-Amyl Methyl Ether	N.D.	5
1,4-Dioxane	N.D.	50

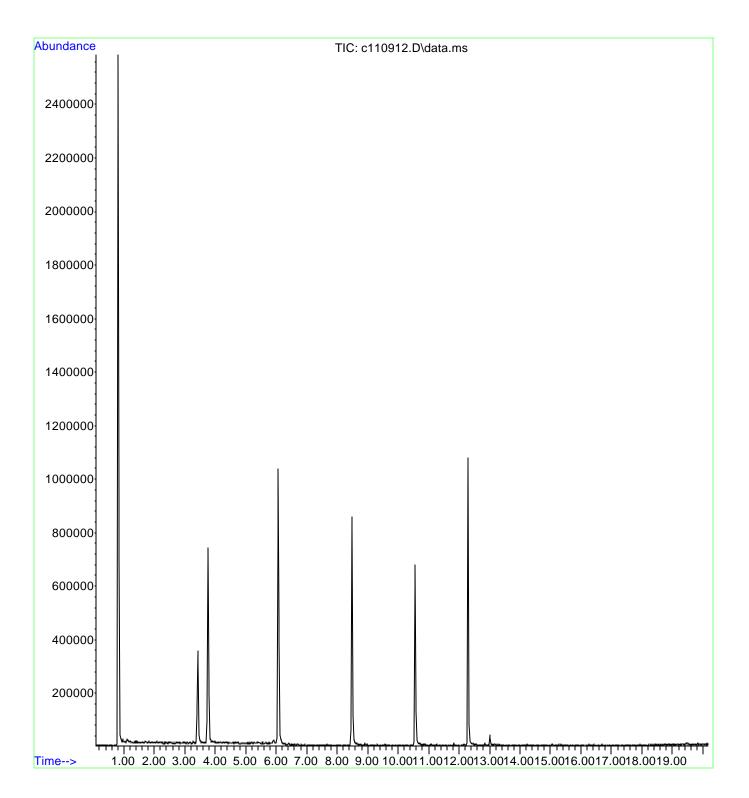
Sample: MW-4 Case No. R1103-09 Date Analyzed: 11/9/06


Compound	Concentration ug/L (ppb)	Reporting <u>Limit</u>
tert-Butyl Alcohol	N.D.	5
tert-Amyl Methyl Ether	N.D.	5
1,4-Dioxane	N.D.	50

File :C:\msdchem\1\DATA\2006\Nov09\c110913.D

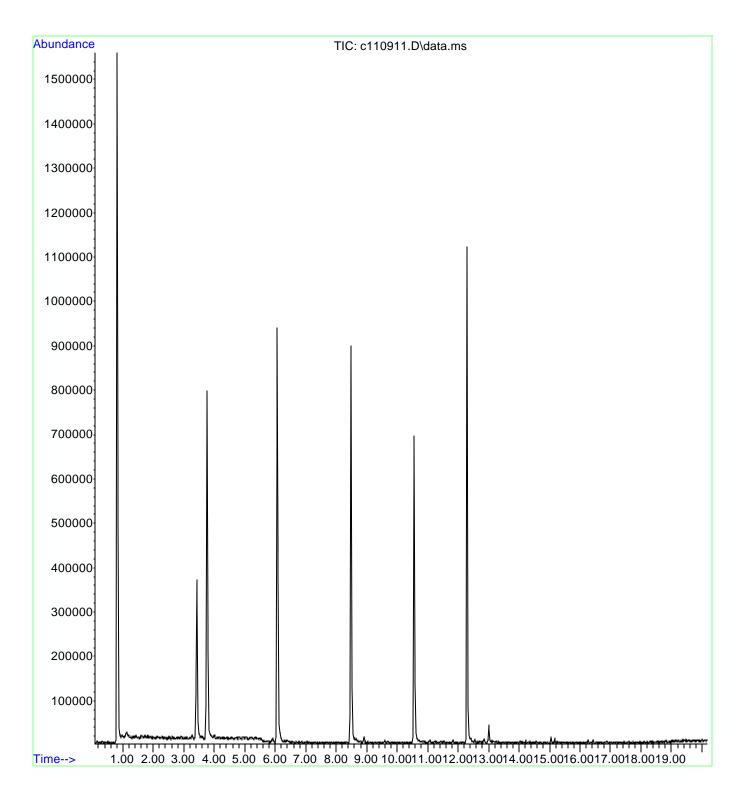
Operator : rcm

Acquired: 9 Nov 2006 2:00 pm using AcqMethod 8260X.M


Instrument : Instrument #1
Sample Name: R1103-09 MW1

File :C:\msdchem\1\DATA\2006\Nov09\c110912.D

Operator : rcm
Acquired : 9 Nov 2006 1:35 pm using AcqMethod 8260X.M


Instrument: Instrument #1 Sample Name: R1103-09 MW2

File :C:\msdchem\1\DATA\2006\Nov09\c110911.D

Operator : rcm
Acquired : 9 Nov 2006 1:10 pm using AcqMethod 8260X.M

Instrument: Instrument #1 Sample Name: R1103-09 MW3

RESULTS: VOLATILE PETROLEUM HYDROCARBONS

Results for VPH analysis are presented in the following section. Each page is electronically signed. In the hardcopy report, two signatures appear on the approval line – the electronic signature and the handwritten signature.

Matrix	X Aqueous	_ Soil	Sediment	_ Othe	r:		
Containers	X Satisfactory	_ Brok	ten _ Leak	ing:			
	Aqueous	_ N/A _	<u>X</u> pH≤2	pH>2	Comment:		
Sample	Soil or	_ N/A _	Samples NOT p	reserve	l Methanol or	air-tight container	mL Methanol/g soil
Preservatives	Sediment	Samples rec'd in Methanol:covering soil not covering soil 1:1 +/- 25%					
		Samples received in air-tight container: Other:					
Temperature	X Received o	n Ice X Re	eceived at 4° C	_Other:			

VPH ANALYTICAL RESULTS

Method for Ranges: MADEP VPH 0			Client ID	MW-1
	Lab ID		R1103-09	
Method for Target Analytes: VPH Surrogate Standards			Date Collected	11/1/06
	_		Date Received	11/3/06
PID: 2,5- Dibromotoluene FID: 2,5- Dibromotoluene	-			11/9/06
FID. 2,3- Dioromotoluene	_		Date Analyzed Dilution Factor	11/9/06 1X
	_		% Moisture (soil)	NA
Range/Target Analyte	Elution Range	RL	Units	IVA
Unadjusted C5-C8 Aliphatics ¹	N/A	50	ug/L	120
Unadjusted C9-C12 Aliphatics ¹	N/A	50	ug/L	953
Benzene	C5-C8	5	ug/L	5
Ethylbenzene	C9-C12	5	ug/L	10
Methyl-tert-butylether	C5-C8	10	ug/L	<10
Naphthalene	N/A	10	ug/L	<10
Toluene	C5-C8	5	ug/L	<5
m- & p- Xylenes	C9-C12	10	ug/L	26
o-Xylene	C9-C12	10	ug/L	<10
C5-C8 Aliphatic Hydrocarbons ^{1,2}	N/A	50	ug/L	115
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	ug/L	464
C9-C10 Aromatic Hydrocarbons ¹	N/A	50	ug/L	453
PID Surrogate % Recovery				99
FID Surrogate % Recovery				104
Surrogate Acceptance Range				70-130%

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range

Were all QA/QC procedures REQUIRED by the VPH Method followe	X Yes	_ No-Details Attached	
Were all performance/acceptance standards for the required QA/QC pr	X Yes	No-Details Attached	
Were any significant modifications made to the VPH method, as specif	fied in Section 11.3?	X No	Yes-Details Attached
I attest under the pains and penalties of perjury that, based upon my inquiry of obtaining the information, the material contained in this report is, to the best of SIGNATURE:	•	elief, accura	te and complete.
PRINTED NAME: Richard Warila	DATE: <u>1/10/2006</u>		

 $^{^2}$ C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C₉-C₁₂ Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C₉-C₁₀ Aromatic Hydrocarbons

Matrix	X Aqueous	_ Soil	Sediment	_ Other	•		
Containers	X Satisfactory	_ Brol	ken _ Leak	ing:			
	Aqueous	_ N/A	<u>X</u> pH≤2	pH>2	Comment:		
Sample	Soil or	_ N/A	Samples NOT p	reserved	Methanol or	air-tight container	mL Methanol/g soil
Preservatives	Sediment	_ Samples r	Samples rec'd in Methanol:covering soilnot covering soil				_ 1:1 +/- 25%
		_ Samples r	eceived in air-tig	tht contain	iner:		_ Other:
Temperature X Received on Ice X Received at 4° C Other:							

VPH ANALYTICAL RESULTS

VPH ANALYTICAL RESULTS			T	
Method for Ranges: MADEP VPH 0		Client ID	MW-2	
Method for Target Analytes:		Lab ID	R1103-09	
VPH Surrogate Standards			Date Collected	11/1/06
PID: 2,5- Dibromotoluene			Date Received	11/3/06
FID: 2,5- Dibromotoluene			Date Analyzed	11/9/06
			Dilution Factor	1X
			% Moisture (soil)	NA
Range/Target Analyte	Elution Range	RL	Units	
Unadjusted C5-C8 Aliphatics ¹	N/A	50	ug/L	<50
Unadjusted C9-C12 Aliphatics ¹	N/A	50	ug/L	<50
Benzene	C5-C8	5	ug/L	<5
Ethylbenzene	C9-C12	5	ug/L	<5
Methyl-tert-butylether	C5-C8	10	ug/L	<10
Naphthalene	N/A	10	ug/L	<10
Toluene	C5-C8	5	ug/L	<5
m- & p- Xylenes	C9-C12	10	ug/L	<10
o-Xylene	C9-C12	10	ug/L	<10
C5-C8 Aliphatic Hydrocarbons ^{1,2}	N/A	50	ug/L	<50
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	ug/L	<50
C9-C10 Aromatic Hydrocarbons ¹	N/A	50	ug/L	<50
PID Surrogate % Recovery				90
FID Surrogate % Recovery				92
Surrogate Acceptance Range				70-130%

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range

Were all QA/QC proce	Were all QA/QC procedures REQUIRED by the VPH Method followed?				
Were all performance/a		_ No-Details Attached			
Were any significant m	odifications made to the VPH method, as specif	ied in Section 1	1.3? <u>X</u> No	Yes-Details Attached	
I attest under the pains are obtaining the information,	•				
SIGNATURE: _	Bill Wat	POSITION: _	Laboratory Dire	ector .	
PRINTED NAME:	Richard Warila	DATE:1 <u>1/10/2</u>	2006		

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C₉-C₁₂ Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C₉-C₁₀ Aromatic Hydrocarbons

Matrix	X Aqueous	_ Soil	Sediment	_ Other	•		
Containers	X Satisfactory	_ Broke	n _ Leak	ting:			
	Aqueous	_ N/A _ <u>X</u>	pH <u><</u> 2	pH>2	Comment:		
Sample	Soil or	_ N/A _ S	Samples NOT p	reserved	Methanol or	air-tight container	mL Methanol/g soil
Preservatives	Sediment	_ Samples red	Samples rec'd in Methanol:covering soilnot covering soil				_ 1:1 +/- 25%
		_ Samples red	ceived in air-tig	ght conta	iner:		_ Other:
Temperature X Received on Ice X Received at 4° C Other:							

VPH ANALYTICAL RESULTS

Method for Ranges: MADEP VPH 0	1/98		Client ID	MW-3
Method for Target Analytes:	Lab ID		R1103-09	
VPH Surrogate Standards			Date Collected	11/1/06
PID: 2,5- Dibromotoluene			Date Received	11/3/06
FID: 2,5- Dibromotoluene			Date Analyzed	11/9/06
			Dilution Factor	1X
			% Moisture (soil)	NA
Range/Target Analyte	Elution Range	RL	Units	
Unadjusted C5-C8 Aliphatics ¹	N/A	50	ug/L	<50
Unadjusted C9-C12 Aliphatics ¹	N/A	50	ug/L	< 50
Benzene	C5-C8	5	ug/L	<5
Ethylbenzene	C9-C12	5	ug/L	<5
Methyl-tert-butylether	C5-C8	10	ug/L	<10
Naphthalene	N/A	10	ug/L	<10
Toluene	C5-C8	5	ug/L	<5
m- & p- Xylenes	C9-C12	10	ug/L	<10
o-Xylene	C9-C12	10	ug/L	<10
C5-C8 Aliphatic Hydrocarbons ^{1,2}	N/A	50	ug/L	<50
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	ug/L	< 50
C9-C10 Aromatic Hydrocarbons ¹	N/A	50	ug/L	<50
PID Surrogate % Recovery				95
FID Surrogate % Recovery				88
Surrogate Acceptance Range		·		70-130%

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range

Were all QA/QC proce	X Yes	_ No-Details Attached		
Were all performance/a	ved? X Yes	No-Details Attached		
Were any significant m	odifications made to the VPH method, as specifi	ed in Section 1	1.3? <u>X</u> No	Yes-Details Attached
•	nd penalties of perjury that, based upon my inquiry of the material contained in this report is, to the best of	^e my knowledge o	and belief, accura	te and complete.
SIGNATURE: _	<u> </u>	POSITION:	Laboratory Dire	ector .
PRINTED NAME:	Richard Warila	DATE:1 <u>1/10/</u>	2006	

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C₉-C₁₂ Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C₉-C₁₀ Aromatic Hydrocarbons

Matrix	X Aqueous	_ Soil	Sediment	_ Other	•		
Containers	X Satisfactory	_ Brol	ken _ Leak	ing:			
	Aqueous	_ N/A	<u>X</u> pH≤2	pH>2	Comment:		
Sample	Soil or	_ N/A	Samples NOT p	reserved	Methanol or	air-tight container	mL Methanol/g soil
Preservatives	Sediment	_ Samples r	Samples rec'd in Methanol:covering soilnot covering soil				_ 1:1 +/- 25%
		_ Samples r	eceived in air-tig	tht contain	iner:		_ Other:
Temperature X Received on Ice X Received at 4° C Other:							

VPH ANALYTICAL RESULTS

VIII ANALI IICAL KESULIS				
Method for Ranges: MADEP VPH 03		Client ID	MW-4	
Method for Target Analytes:	Lab ID		R1103-09	
VPH Surrogate Standards			Date Collected	11/1/06
PID: 2,5- Dibromotoluene			Date Received	11/3/06
FID: 2,5- Dibromotoluene			Date Analyzed	11/9/06
			Dilution Factor	1X
			% Moisture (soil)	NA
Range/Target Analyte	Elution Range	RL	Units	
Unadjusted C5-C8 Aliphatics ¹	N/A	50	ug/L	<50
Unadjusted C9-C12 Aliphatics ¹	N/A	50	ug/L	<50
Benzene	C5-C8	5	ug/L	<5
Ethylbenzene	C9-C12	5	ug/L	<5
Methyl-tert-butylether	C5-C8	10	ug/L	<10
Naphthalene	N/A	10	ug/L	<10
Toluene	C5-C8	5	ug/L	<5
m- & p- Xylenes	C9-C12	10	ug/L	<10
o-Xylene	C9-C12	10	ug/L	<10
C5-C8 Aliphatic Hydrocarbons ^{1,2}	N/A	50	ug/L	<50
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	ug/L	<50
C9-C10 Aromatic Hydrocarbons ¹	N/A	50	ug/L	<50
PID Surrogate % Recovery				93
FID Surrogate % Recovery				101
Surrogate Acceptance Range				70-130%
1				

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range

Were all QA/QC procedures REQUIRED by the VPH Method followe	X Yes	_ No-Details Attached	
Were all performance/acceptance standards for the required QA/QC pr	X Yes	No-Details Attached	
Were any significant modifications made to the VPH method, as specif	fied in Section 11.3?	X No	Yes-Details Attached
I attest under the pains and penalties of perjury that, based upon my inquiry of obtaining the information, the material contained in this report is, to the best of SIGNATURE:	•	elief, accura	te and complete.
PRINTED NAME: Richard Warila	DATE: <u>1/10/2006</u>		

²C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C₉-C₁₂ Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C₉-C₁₀ Aromatic Hydrocarbons

Matrix	X Aqueous	SoilSedimentOther:			
Containers	_ Satisfactory	_ Broken _ Leaking:			
	Aqueous	$X N/A pH \le 2 pH > 2$ Comment:			
Sample	Soil or	N/A Samples NOT preserved Methanol or air-tight container	mL Methanol/g soil		
Preservatives	Sediment	_ Samples rec'd in Methanol: _ covering soil _ not covering soil	_ 1:1 +/- 25%		
		_ Samples received in air-tight container:	_ Other:		
Temperature	Temperature Received on Ice Received at 4° C Other:				

VPH ANALYTICAL RESULTS

Method for Ranges: MADEP VPH 0		Client ID	Method Blank	
Method for Target Analytes:	Lab ID		R1103-09	
VPH Surrogate Standards			Date Collected	NA
PID: 2,5- Dibromotoluene			Date Received	NA
FID: 2,5- Dibromotoluene			Date Analyzed	11/9/06
			Dilution Factor	1X
			% Moisture (soil)	NA
Range/Target Analyte	Elution Range	RL	Units	
Unadjusted C5-C8 Aliphatics ¹	N/A	50	ug/L	< 50
Unadjusted C9-C12 Aliphatics ¹	N/A	50	ug/L	< 50
Benzene	C5-C8	5	ug/L	<5
Ethylbenzene	C9-C12	5	ug/L	<5
Methyl-tert-butylether	C5-C8	10	ug/L	<10
Naphthalene	N/A	10	ug/L	<10
Toluene	C5-C8	5	ug/L	<5
m- & p- Xylenes	C9-C12	10	ug/L	<10
o-Xylene	C9-C12	10	ug/L	<10
C5-C8 Aliphatic Hydrocarbons ^{1,2}	N/A	50	ug/L	<50
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	ug/L	<50
C9-C10 Aromatic Hydrocarbons ¹	N/A	50	ug/L	<50
PID Surrogate % Recovery				97
FID Surrogate % Recovery				96
Surrogate Acceptance Range				70-130%

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range

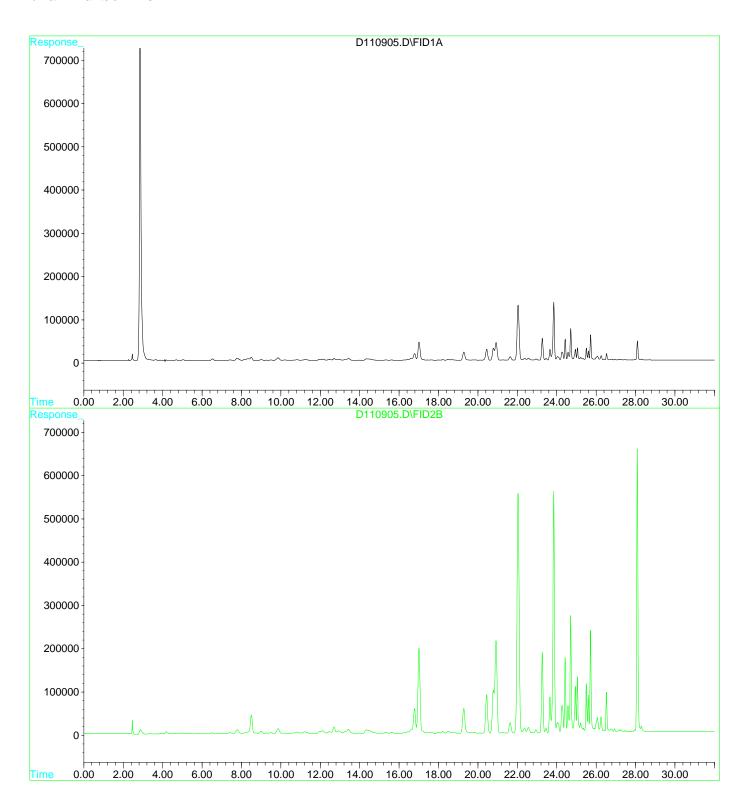
Were all QA/QC procedures REQUIRED by the VPH Method followe	d?	X Yes	No-Details Attached		
Were all performance/acceptance standards for the required QA/QC pr	ocedures achieved?	\underline{X} Yes	No-Details Attached		
Were any significant modifications made to the VPH method, as specif	ied in Section 11.3?	X No	Yes-Details Attached		
I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. SIGNATURE: POSITION: Laboratory Director					
PRINTED NAME: Richard Warila	DATE:1 <u>1/10/2006</u>				

 $^{^2}$ C₅-C₈ Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

 $^{^3}C_9 - C_{12} \ Aliphatic \ Hydrocarbons \ exclude \ conc \ of \ Target \ Analytes \ eluting \ in \ that \ range \ AND \ concentration \ of \ C_9 - C_{10} \ Aromatic \ Hydrocarbons$

VPH LABORATORY CONTROL SPIKE-WATER

Date Analyzed: 11/9/06

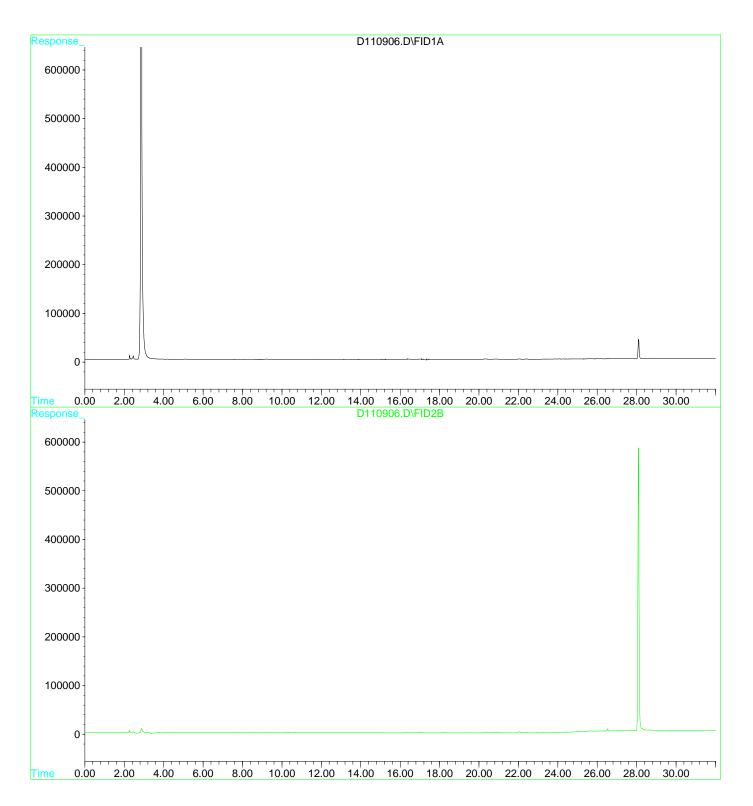

	Amount Spiked, μg/L	Result, μg/L	Recovery, %	Recovery Limits, %
TBME	50.0	49.7	99	70-130
Benzene	50.0	61.2	122	70-130
Toluene	50.0	47.6	95	70-130
Ethylbenzene	50.0	48.3	97	70-130
m&p Xylene	100.0	101.7	102	70-130
o-Xylene	50.0	45.7	91	70-130
Naphthalene	50.0	39.7	79	70-130
Pentane	50.0	45.8	92	70-130
2-Methyl pentane	50.0	54.0	108	70-130
2,2,4-trimethylpentane	50.0	51.4	103	70-130

File : C:\HPCHEM\1\DATA\NOV0906\D110905.D

Operator : rcm

Acquired : 9 Nov 20106 11:15 am using AcqMethod VPHX.M

Instrument : 5890 VPH
Sample Name: R1103-09 MW1

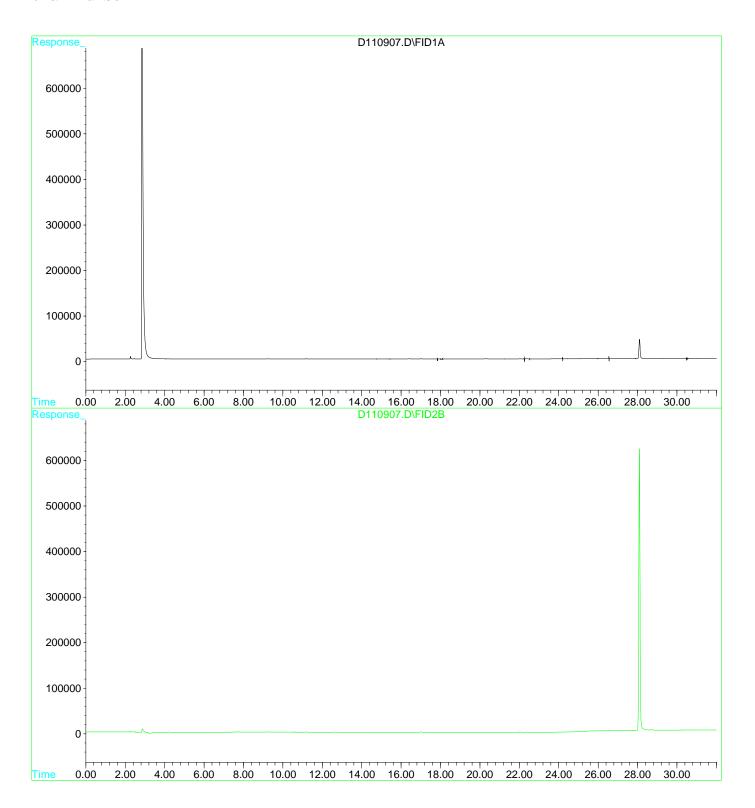


File : C:\HPCHEM\1\DATA\NOV0906\D110906.D

Operator : rcm

Acquired : 9 Nov 20106 11:54 am using AcqMethod VPHX.M

Instrument : 5890 VPH
Sample Name: R1103-09 MW2

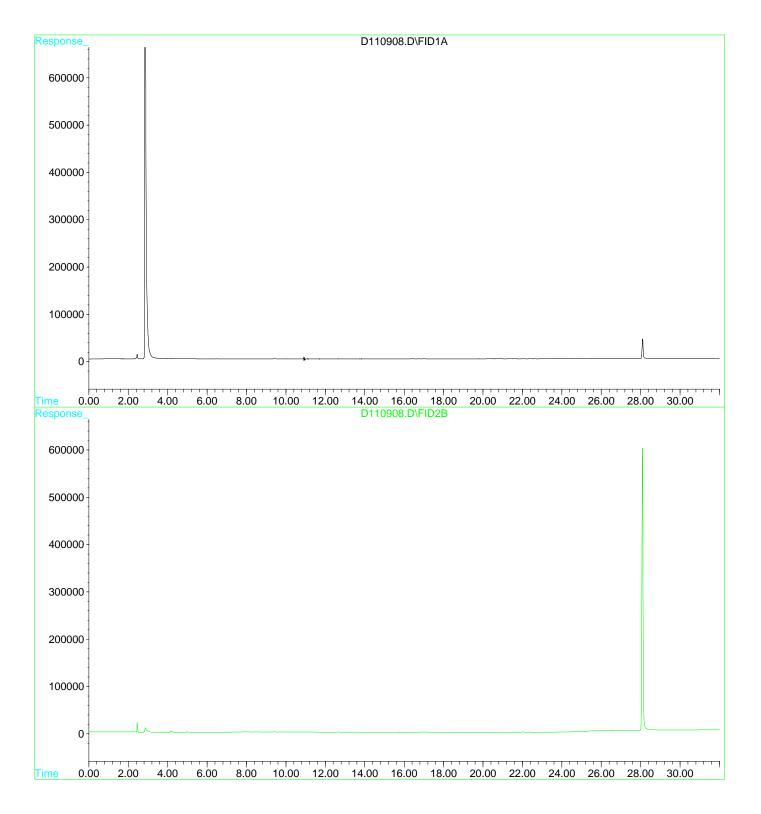


File : C:\HPCHEM\1\DATA\NOV0906\D110907.D

Operator : rcm

Acquired : 9 Nov 20106 12:33 pm using AcqMethod VPHX.M

Instrument : 5890 VPH
Sample Name: R1103-09 MW3



File : C:\HPCHEM\1\DATA\NOV0906\D110908.D

Operator : rcm

Acquired : 9 Nov 20106 1:13 pm using AcqMethod VPHX.M

Instrument : 5890 VPH
Sample Name: R1103-09 MW4

RESULTS: EXTRACTABLE PETROLEUM HYDROCARBONS

Results for EPH analysis are presented in the following section. Each page is electronically signed. In the hardcopy report, two signatures appear on the approval line – the electronic signature and the handwritten signature.

Matrix	X Aqueous Soil Sediment Other
Containers	X Satisfactory Broken Leaking:
Aqueous Preservatives	N/A X pH<2 pH>2 Comment:
Temperature	X Received on Ice Received at 4 ° C Other:
Extraction Method	Water: Separatory Funnel Soil: N/A

EPH ANALYTICAL RESULTS

	CAL RESULTS			
Method for Rai	nges: MADEP EPH 98-1	Client ID		MW-1
Method for Target Analytes:		Lab ID		R1103-09
EPH Surrogate Standards		Date Collected		11/1/06
Aliphatic: Chl	orooctadecane		Date Received	11/3/06
Aromatic: o-To	erphenyl		Date Extracted	11/8/06
EPH Fractionati	on Surrogates		Date Analyzed	11/9/06
2-Fluorobiphe	•		Dilution Factor	1X
2-Bromonaph			% Moisture (soil)	N/A
RANGE/TARG	ET ANALYTE	RL	Units	
Unadjusted C11	1-C22 Aromatics ¹	176	ug/L	<176
	Naphthalene	1.2	ug/L	<1.2
Diesel PAH	2-Methylnaphthalene	1.2	ug/L	<1.2
Analytes	Phenanthrene	1.2	ug/L	<1.2
-	Acenaphthylene	1.2	ug/L	<1.2
	Acenaphthene	5.9	ug/L	<5.9
	Fluorene	5.9	ug/L	<5.9
	Anthracene	5.9	ug/L	<5.9
	Fluoranthene	5.9	ug/L	<5.9
Other	Pyrene	5.9	ug/L	<5.9
Target PAH	Benzo(a)anthracene	1.2	ug/L	<1.2
Analytes	Chrysene	2.4	ug/L	<2.4
	Benzo(b)fluoranthene	1.2	ug/L	<1.2
	Benzo(k)fluoranthene	1.2	ug/L	<1.2
	Benzo(a)pyrene	0.2	ug/L	<0.2
	Indeno(1,2,3-cd)pyrene	0.6	ug/L	<0.6
	Dibenzo(a,h)anthracene	0.6	ug/L	<0.6
	Benzo(g,h,i)perylene	5.9	ug/L	<5.9
C9-C18 Alipha	tic Hydrocarbons ¹	235	ug/L	<235
C19-C36 Aliphatic Hydrocarbons ¹		235	ug/L	<235
C11-C22 Aromatic Hydrocarbons ^{1,2}		176	ug/L	<176
Alinhatic Surrogate % Recovery				72.
Aromatic Surrogate % Recovery				98
Sample Surrogate Acceptance Range				40-140%
Fractionation Surrogate % Recovery				117
Fractionation Surrogate % Recovery				121
	Surrogate Acceptance Range			40-140%
III I. Januari I	D J . 4 1 . J		4 1 4 3 3 1 - 4 1	

¹Hvdrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ²C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes

Were all QA/QC procedures REQUIRED by the EPH Method fol	lowed? <u>X</u> Yes _ No-Details Attached			
Were all performance/acceptance standards for the required QA/QC procedures achieved? X Yes _ No-Details Attache				
Were any significant modifications made to the EPH method, as specified in Section 11.3? X No Yes-Details Attached				
I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.				
のはついること SIGNATURE:	POSITION: Laboratory Director .			
PRINTED NAME: Richard Warila	DATE: 11/10/2006			

Matrix	X Aqueous Soil Sediment Other
Containers	X Satisfactory Broken Leaking:
Aqueous Preservatives	N/A X pH<2 pH>2 Comment:
Temperature	X Received on Ice Received at 4 ° C Other:
Extraction Method	Water: Separatory Funnel Soil: N/A

EPH ANALYTICAL RESULTS

CAL RESULTS			
Method for Ranges: MADEP EPH 98-1		Client ID	MW-2
Method for Target Analytes:		Lab ID	R1103-09
EPH Surrogate Standards		Date Collected	11/1/06
prooctadecane		Date Received	11/3/06
erphenyl		Date Extracted	11/8/06
on Surrogates		Date Analyzed	11/9/06
nyl			1X
halene		% Moisture (soil)	N/A
ET ANALYTE	RL	Units	
-C22 Aromatics ¹	150	ug/L	<150
Naphthalene	1.0	ug/L	<1.0
2-Methylnaphthalene	1.0	ug/L	<1.0
Phenanthrene	1.0	ug/L	<1.0
Acenaphthylene	1.0	ug/L	<1.0
Acenaphthene	5.0	ug/L	<5.0
Fluorene	5.0	ug/L	<5.0
Anthracene	5.0	ug/L	<5.0
Fluoranthene	5.0	ug/L	<5.0
Pyrene	5.0	ug/L	<5.0
Benzo(a)anthracene	1.0	ug/L	<1.0
Chrysene	2.0	ug/L	<2.0
Benzo(b)fluoranthene	1.0	ug/L	<1.0
Benzo(k)fluoranthene	1.0	ug/L	<1.0
Benzo(a)pyrene	0.2	ug/L	<0.2
Indeno(1,2,3-cd)pyrene	0.5	ug/L	<0.5
Dibenzo(a,h)anthracene	0.5	ug/L	<0.5
Benzo(g,h,i)perylene	5.0	ug/L	<5.0
tic Hydrocarbons ¹	200	ug/L	<200
C19-C36 Aliphatic Hydrocarbons ¹		ug/L	<200
C11-C22 Aromatic Hydrocarbons ^{1,2}		ug/L	<150
Alinhatic Surrogate % Recovery			69
Aromatic Surrogate % Recovery			91
Sample Surrogate Acceptance Range			40-140%
Fractionation Surrogate % Recovery			119
Fractionation Surrogate % Recovery			117
urrogate Acceptance Range			40-140%
	ges: MADEP EPH 98-1 get Analytes: Standards prooctadecane erphenyl on Surrogates nyl chalene ET ANALYTE -C22 Aromatics¹ Naphthalene 2-Methylnaphthalene Phenanthrene Acenaphthylene Acenaphthene Fluorene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene sic Hydrocarbons¹ atic Hydrocarbons²	ges: MADEP EPH 98-1 get Analytes: Standards prococtadecane erphenyl on Surrogates nyl halene ET ANALYTE	Client ID

¹Hvdrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ²C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes

Were all QA/QC procedures REQUIRED by the EPH Method for	llowed? <u>X</u> Yes _ No-Details Attached			
Were all performance/acceptance standards for the required QA	A/QC procedures achieved? X Yes _ No-Details Attached			
Were any significant modifications made to the EPH method, as	specified in Section 11.3? X No Yes-Details Attached			
I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.				
Gill Will SIGNATURE:	POSITION: Laboratory Director .			
PRINTED NAME: Richard Warila	DATE: 11/10/2006			

Matrix	X Aqueous Soil Sediment Other:
Containers	X Satisfactory Broken Leaking:
Aqueous Preservatives	N/A X pH<2 pH>2 Comment:
Temperature	X Received on Ice Received at 4 ° C Other:
Extraction Method	Water: Separatory Funnel Soil: N/A

EPH ANALYTICAL RESULTS

CHE RESULTS			
ges: MADEP EPH 98-1	Client ID		MW-3
Method for Target Analytes:		Lab ID	R1103-09
EPH Surrogate Standards		Date Collected	11/1/06
orooctadecane	Date Received		11/3/06
erphenyl		Date Extracted	11/8/06
ion Surrogates		Date Analyzed	11/9/06
enyl			1X
		\ /	N/A
		Units	
-C22 Aromatics ¹	150	ug/L	<150
Naphthalene	1.0	ug/L	<1.0
2-Methylnaphthalene	1.0	ug/L	<1.0
Phenanthrene	1.0	ug/L	<1.0
Acenaphthylene	1.0	ug/L	<1.0
Acenaphthene	5.0	ug/L	<5.0
Fluorene	5.0	ug/L	<5.0
Anthracene	5.0	ug/L	<5.0
Fluoranthene	5.0	ug/L	<5.0
Pyrene	5.0	ug/L	<5.0
Benzo(a)anthracene	1.0	ug/L	<1.0
Chrysene	2.0	ug/L	<2.0
Benzo(b)fluoranthene	1.0	ug/L	<1.0
Benzo(k)fluoranthene	1.0	ug/L	<1.0
Benzo(a)pyrene	0.2	ug/L	<0.2
Indeno(1,2,3-cd)pyrene	0.5	ug/L	<0.5
Dibenzo(a,h)anthracene	0.5	ug/L	<0.5
Benzo(g,h,i)perylene	5.0	ug/L	<5.0
tic Hydrocarbons ¹	200	ug/L	<200
C19-C36 Aliphatic Hydrocarbons ¹		ug/L	<200
C11-C22 Aromatic Hydrocarbons ^{1,2}		ug/L	<150
Alinhatic Surrogate % Recovery			66
Aromatic Surrogate % Recovery			100
Sample Surrogate Acceptance Range			40-140%
Fractionation Surrogate % Recovery			117
Fractionation Surrogate % Recovery			122
Surrogate Acceptance Range		. 1 . 1 1 1	40-140%
	ges: MADEP EPH 98-1 get Analytes: Standards prooctadecane erphenyl ion Surrogates enyl thalene ET ANALYTE -C22 Aromatics¹ Naphthalene 2-Methylnaphthalene Phenanthrene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene tic Hydrocarbons¹ atic Hydrocarbons²	ges: MADEP EPH 98-1 get Analytes: Standards prococtadecane erphenyl fon Surrogates fonyl thalene ET ANALYTE —C22 Aromatics¹ Naphthalene 2-Methylnaphthalene Phenanthrene 1.0 Acenaphthylene 1.0 Acenaphthene 5.0 Fluorene 5.0 Anthracene Fluoranthene 5.0 Pyrene 5.0 Benzo(a)anthracene 1.0 Chrysene 2.0 Benzo(b)fluoranthene 1.0 Benzo(b)fluoranthene 1.0 Benzo(a)pyrene 1.0 Benzo(a)pyrene 0.2 Indeno(1,2,3-cd)pyrene 0.5 Benzo(g,h,i)perylene 5.0 tic Hydrocarbons¹ 200 atic Hydrocarbons Recovery attrogate % Recovery	Client ID

¹Hvdrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ²C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes

Were all QA/QC procedures REQUIRED by the EPH Method fol	lowed? <u>X</u> Yes _ No-Details Attached			
Were all performance/acceptance standards for the required QA/QC procedures achieved? X Yes _ No-Details Attached				
Were any significant mo diffications made to the EPH method, as specified in Section 11.3? X No Yes-Details Attached				
I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.				
6はヘルシン SIGNATURE:	POSITION: Laboratory Director .			
PRINTED NAME: Richard Warila	DATE: 11/10/2006			

Matrix	X Aqueous Soil Sediment Other:
Containers	X Satisfactory Broken Leaking:
Aqueous Preservatives	N/A X pH<2 pH>2 Comment:
Temperature	X Received on Ice Received at 4 ° C Other:
Extraction Method	Water: Separatory Funnel Soil: N/A

EPH ANALYTICAL RESULTS

	CILI RESCETS		T	
Method for Ranges: MADEP EPH 98-1			Client ID	MW-4
Method for Target Analytes:		Lab ID		R1103-09
EPH Surrogate Standards		Date Collected		11/1/06
Aliphatic: Chl		Date Received		11/3/06
Aromatic: o-To	1 ,		Date Extracted	11/8/06
EPH Fractionat	•		Date Analyzed	11/9/06
2-Fluorobiphe	•		Dilution Factor	1X
2-Bromonaph		% Moisture (soil)		N/A
RANGE/TARG		RL	Units	
Unadjusted C11	1-C22 Aromatics ¹	150	ug/L	<150
	Naphthalene	1.0	ug/L	<1.0
Diesel PAH	2-Methylnaphthalene	1.0	ug/L	<1.0
Analytes	Phenanthrene	1.0	ug/L	<1.0
	Acenaphthylene	1.0	ug/L	<1.0
	Acenaphthene	5.0	ug/L	<5.0
	Fluorene	5.0	ug/L	<5.0
	Anthracene	5.0	ug/L	<5.0
	Fluoranthene	5.0	ug/L	<5.0
Other	Pyrene	5.0	ug/L	<5.0
	Benzo(a)anthracene	1.0	ug/L	<1.0
	Chrysene	2.0	ug/L	<2.0
	Benzo(b)fluoranthene	1.0	ug/L	<1.0
	Benzo(k)fluoranthene	1.0	ug/L	<1.0
	Benzo(a)pyrene	0.2	ug/L	<0.2
	Indeno(1,2,3-cd)pyrene	0.5	ug/L	< 0.5
	Dibenzo(a,h)anthracene	0.5	ug/L	< 0.5
	Benzo(g,h,i)perylene	5.0	ug/L	<5.0
C9-C18 Aliphat	tic Hydrocarbons ¹	200	ug/L	<200
	atic Hydrocarbons ¹	200	ug/L	<200
	atic Hydrocarbons ^{1,2}	150	ug/L	<150
Alinhatic Surrogate % Recovery				43
Aromatic Surrogate % Recovery				98
Sample Surrogate Acceptance Range				40-140%
Fractionation Surrogate % Recovery				134
Fractionation Surrogate % Recovery				140
	Surrogate Acceptance Range	(() 1/ :		40-140%

¹Hvdrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ²C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes

Were all QA/QC procedures REQUIRED by the EPH Method fol	lowed? <u>X</u> Yes _ No-Details Attached			
Were all performance/acceptance standards for the required QA/QC procedures achieved? X Yes _ No-Details Attached				
Were any significant modifications made to the EPH method, as specified in Section 11.3? X No Yes-Details Attached				
I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.				
6はヘルシン SIGNATURE:	POSITION: Laboratory Director .			
PRINTED NAME: Richard Warila	DATE: 11/10/2006			

Matrix	X Aqueous Soil Sediment Other:
Containers	Satisfactory Broken Leaking:
Aqueous Preservatives	N/A pH<2 pH>2 Comment:
Temperature	Received on Ice Received at 4 ° C Other:
Extraction Method	Water: Separatory Funnel Soil: N/A

EPH ANALYTICAL RESULTS

	iges: MADEP EPH 98-1		Client ID	Method Blank
Method for Tai	rget Analytes:		Lab ID	R1103-09
EPH Surrogate	Standards		Date Collected	NA
Aliphatic: Chl	orooctadecane		Date Received	NA
Aromatic: o-T	Aromatic: o-Terphenyl		Date Extracted	11/8/06
EPH Fractionat	e e		Date Analyzed	11/9/06
2-Fluorobiphe	5		Dilution Factor	1X
2-Bromonaph			% Moisture (soil)	N/A
	ET ANALYTE	RL	Units	
Unadjusted C11	1-C22 Aromatics ¹	150	ug/L	<150
	Naphthalene	1.0	ug/L	<1.0
Diesel PAH	2-Methylnaphthalene	1.0	ug/L	<1.0
Analytes	Phenanthrene	1.0	ug/L	<1.0
	Acenaphthylene	1.0	ug/L	<1.0
	Acenaphthene	5.0	ug/L	<5.0
	Fluorene	5.0	ug/L	<5.0
	Anthracene	5.0	ug/L	<5.0
	Fluoranthene	5.0	ug/L	<5.0
Other	Pyrene	5.0	ug/L	<5.0
Target PAH	Benzo(a)anthracene	1.0	ug/L	<1.0
Analytes	Chrysene	2.0	ug/L	<2.0
	Benzo(b)fluoranthene	1.0	ug/L	<1.0
	Benzo(k)fluoranthene	1.0	ug/L	<1.0
	Benzo(a)pyrene	0.2	ug/L	<0.2
	Indeno(1,2,3-cd)pyrene	0.5	ug/L	<0.5
	Dibenzo(a,h)anthracene	0.5	ug/L	<0.5
	Benzo(g,h,i)perylene	5.0	ug/L	<5.0
C9-C18 Alinha	tic Hydrocarbons ¹	200	11g/L	<2.00
C19-C36 Aliph	atic Hydrocarbons ¹	200	ug/L	<200
	atic Hydrocarbons ^{1,2}	150	ug/L	<150
	ogate % Recovery			56
	ogate % Recovery			95
	ate Acceptance Range			40-140%
	Surrogate % Recovery			119
	Surrogate % Recovery			130
	Surrogate Acceptance Range		. 1 . 1 1 1	40-140%

¹Hvdrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range ²C11-C22 Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes

Were all QA/QC procedures REQUIRED by the EPH Method fol	lowed? <u>X</u> Yes _ No-Details Attached								
Were all performance/acceptance standards for the required QA	/QC procedures achieved? X Yes _ No-Details Attached								
Were any significant modifications made to the EPH method, as specified in Section 11.3? \underline{X} No $\underline{\hspace{0.5cm}}$ Yes-Details Attached									
I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.									
のはついること SIGNATURE:	POSITION: Laboratory Director .								
PRINTED NAME: Richard Warila	DATE: 11/10/2006								

Spike Recovery and RPD Summary Report - WATER

Method : R:\2\METHODS\ALI.M (Chemstation Integrator)

Title

Last Update : Fri Nov 10 09:36:57 2006

Response via: Initial Calibration

Non-Spiked Sample: F110913.D

Spike Spike

Sample Duplicate Sample

| F110915.D File ID : F110914.D | LHWD 11-08 Sample : LHW11-08

Acq Time: 9 Nov 20106 7:19 pm | 9 Nov 20106 7:57 pm

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Nonane	1 0.0	40	23	25	l 58	62	l 8	25	30-140
Tetradecane	0.0	40	38	41	95	102	7	25	40-140
Nonadecane	j 0.0	i 40	45	44	113	111	j 2	25	40-140
Eicosane	j 0.0	40	47	47	117	117	j o	25	40-140
Octacosane	0.0	40	47	46	116	115	1	25	40-140

- Fails Limit Check

ALI.M Fri Nov 10 10:03:09 2006

Spike Recovery and RPD Summary Report - WATER

Method : R:\2\METHODS\ARO.M (Chemstation Integrator)

Title

Last Update : Thu Nov 09 16:13:25 2006

Response via: Initial Calibration

Non-Spiked Sample: F110903.D

Spike Spike

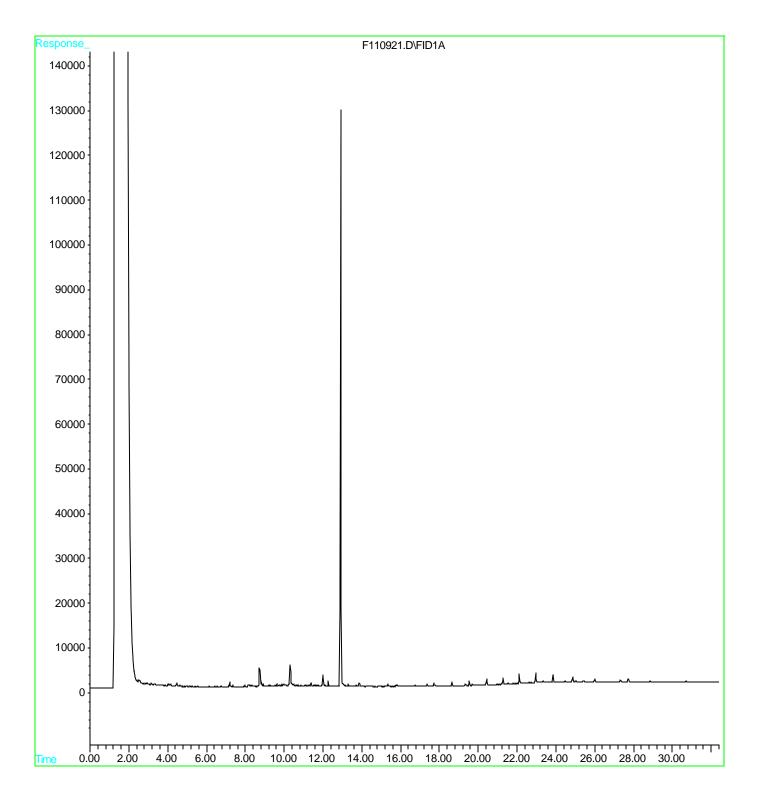
Sample Duplicate Sample

| F110905.D File ID : F110904.D LMWD 11-08 Sample : LMW11-08

Acq Time: 9 Nov 20106 1:12 pm | 9 Nov 20106 1:48 pm

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Napthalene	1 0.0	l 40	38	41	95	102	l 6	25	40-140
2 methyl napthalene	0.0	40	37	39	91	97	j 6	25	40-140
Acenapthene	j 0.0	40	37	38	92	95	j 4	25	40-140
Anthracene	0.0	40	44	44	110	109	j 1	25	40-140
Pyrene	0.0	40	47	46	117	114	j 2	25	40-140
Chrysene	0.0	40	47	47	118	116	j 2	25	40-140

- Fails Limit Check

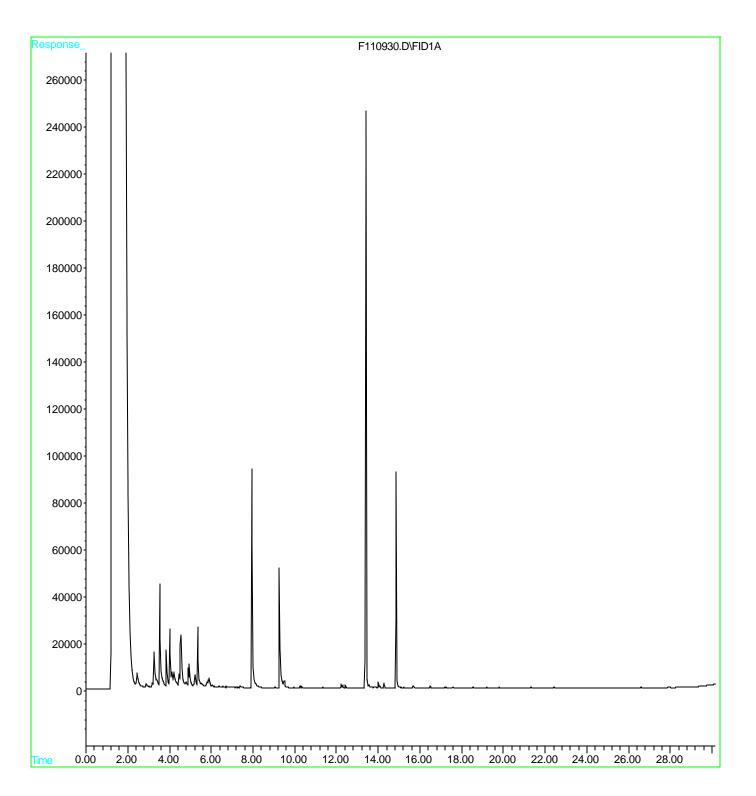

ARO.M Fri Nov 10 10:09:31 2006 File : R:\2\DATA\F110906\F110921.D

Operator :

Acquired: 9 Nov 20106 11:49 pm using AcqMethod FID.M

Instrument : GC2

Sample Name: 1103-09 1HX

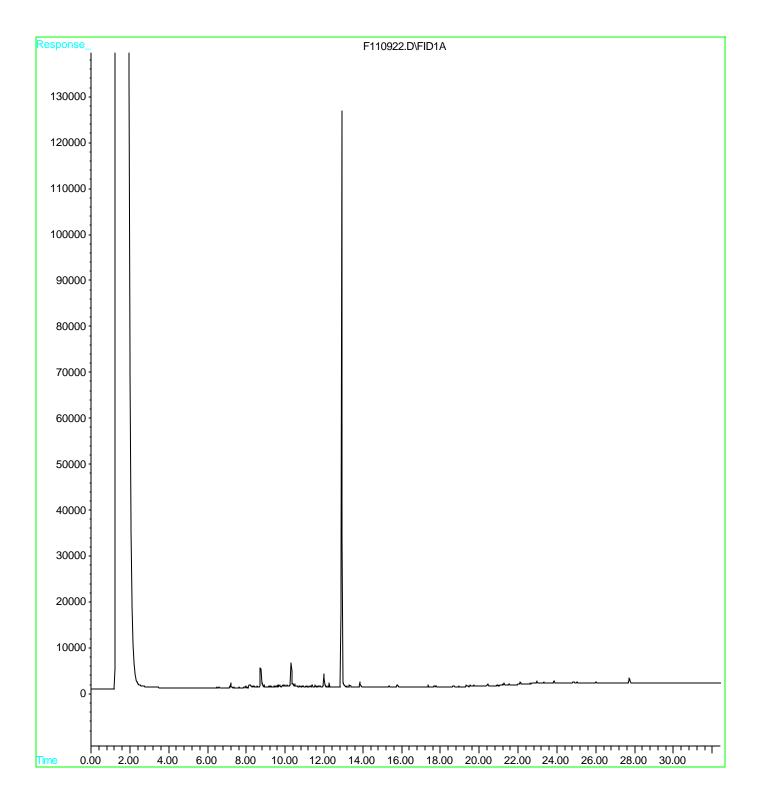


File : R:\2\DATA\F110906\F110930.D

Operator :

Acquired: 10 Nov 20106 5:30 am using AcqMethod AROM.M

Instrument : GC2
Sample Name: 110309 1ME

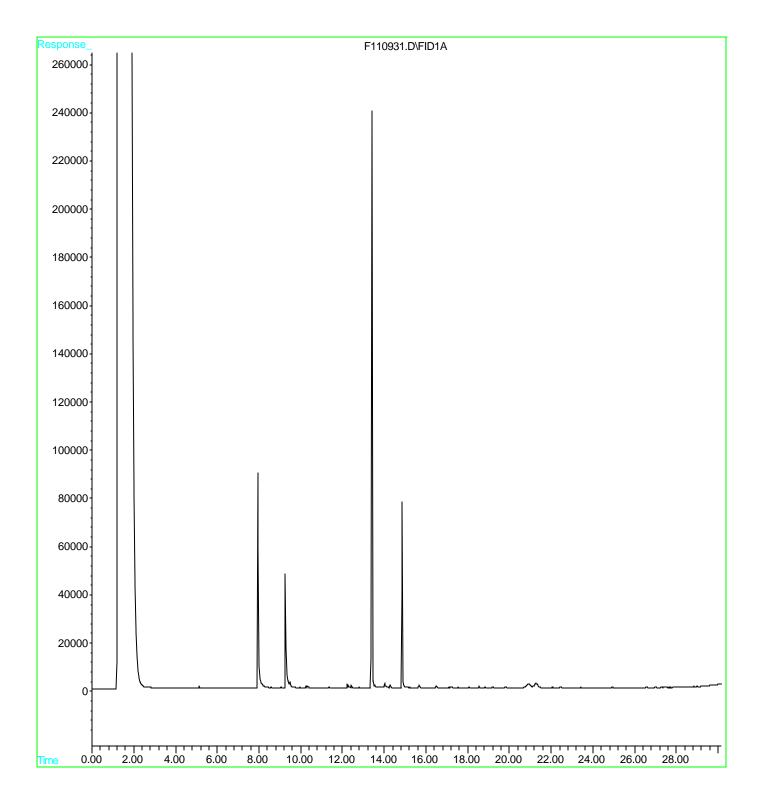

File : R:\2\DATA\F110906\F110922.D

Operator :

Acquired: 10 Nov 20106 12:27 am using AcqMethod FID.M

Instrument: GC2

Sample Name: 1103-09 2HX

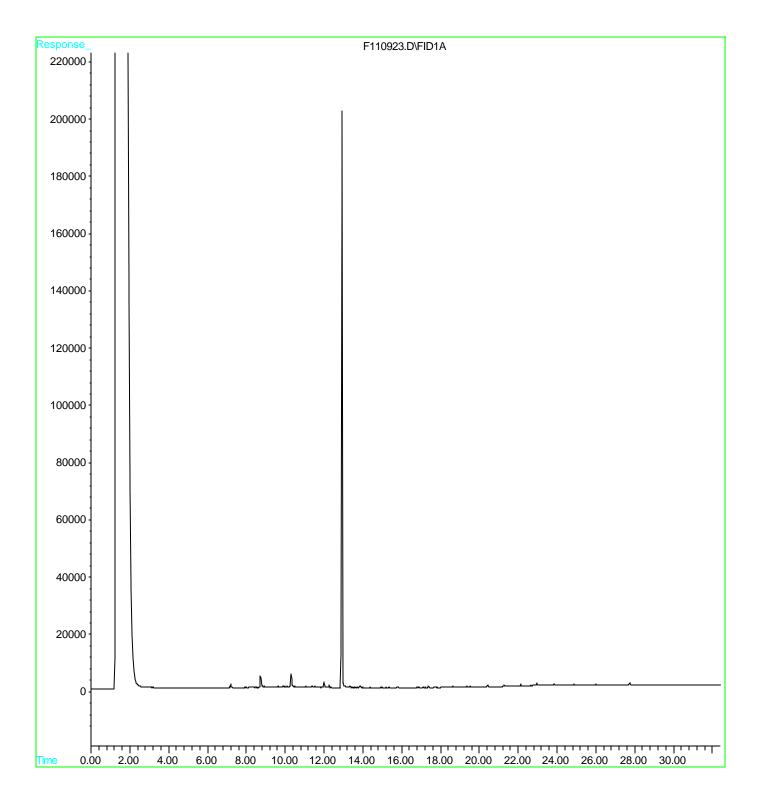


File : R:\2\DATA\F110906\F110931.D

Operator :

Acquired: 10 Nov 20106 6:06 am using AcqMethod AROM.M

Instrument : GC2
Sample Name: 110309 2ME

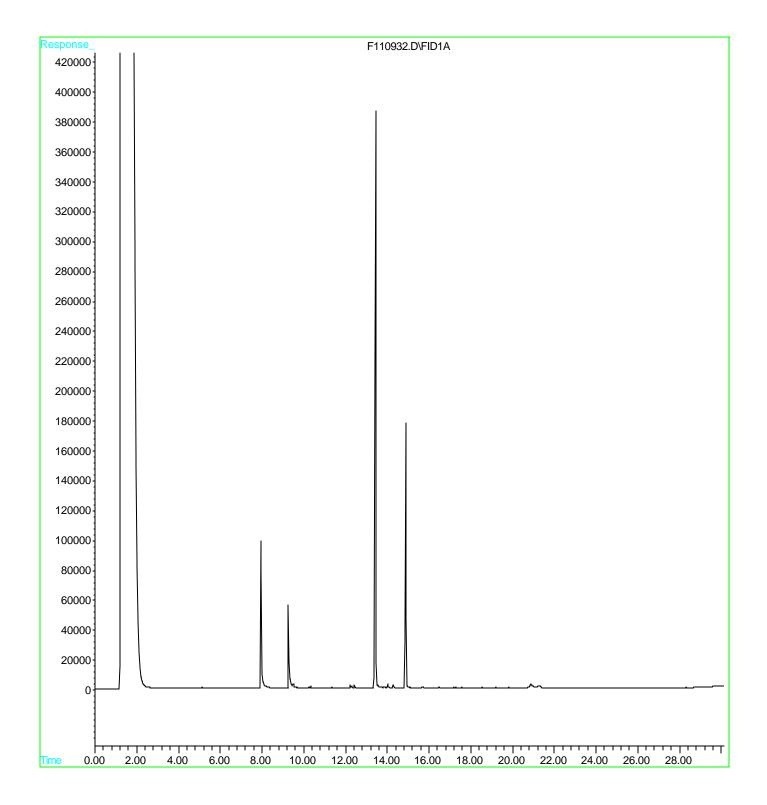

File : R:\2\DATA\F110906\F110923.D

Operator :

Acquired: 10 Nov 20106 1:06 am using AcqMethod FID.M

Instrument: GC2

Sample Name: 1103-09 3HX

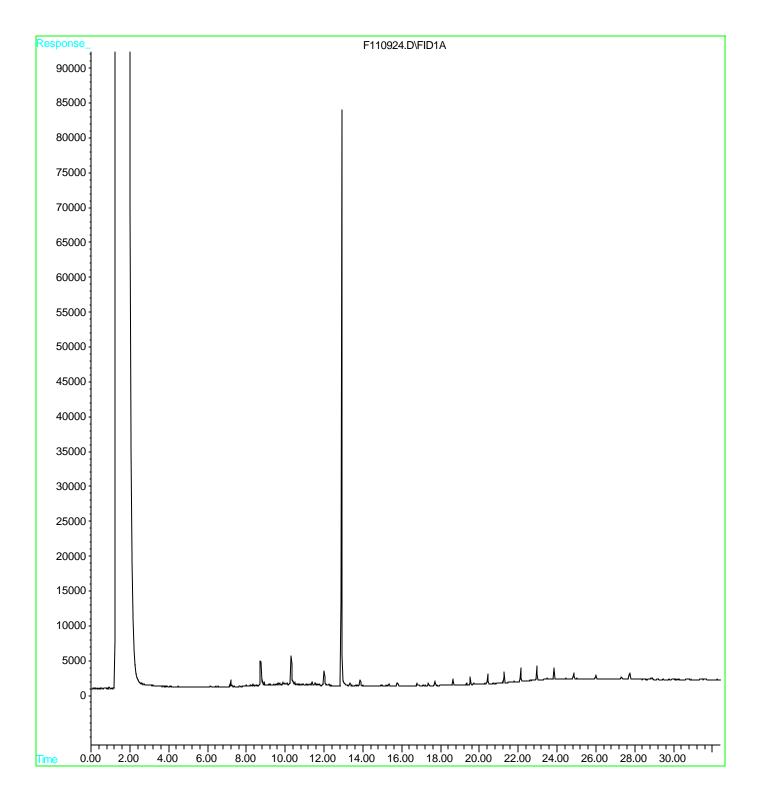


File : R:\2\DATA\F110906\F110932.D

Operator :

Acquired: 10 Nov 20106 6:43 am using AcqMethod AROM.M

Instrument : GC2
Sample Name: 110309 3ME

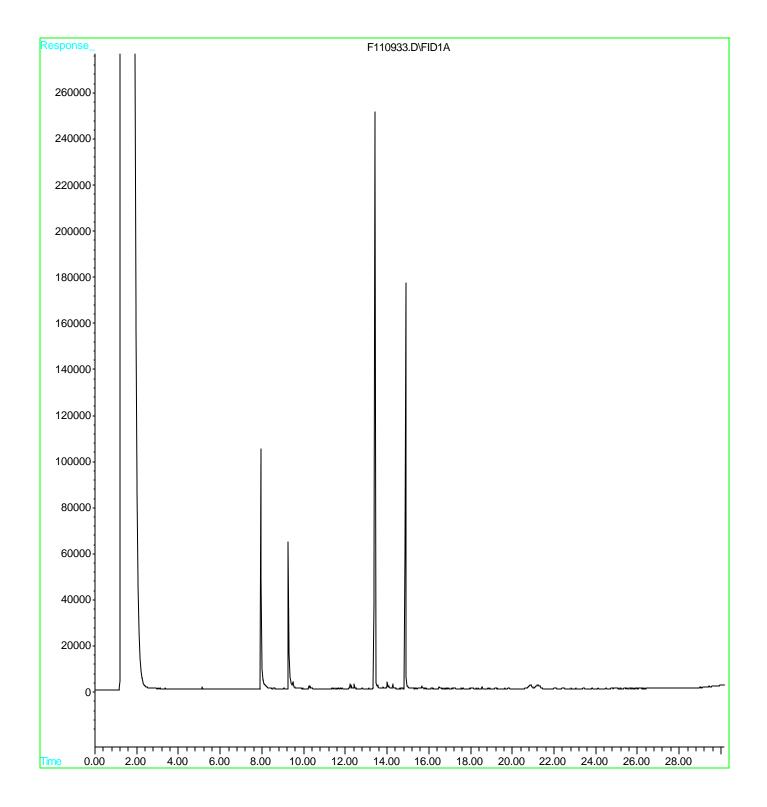

File : R:\2\DATA\F110906\F110924.D

Operator :

Acquired: 10 Nov 20106 1:44 am using AcqMethod FID.M

Instrument : GC2

Sample Name: 1103-09 4HX



File : R:\2\DATA\F110906\F110933.D

Operator :

Acquired: 10 Nov 20106 7:19 am using AcqMethod AROM.M

Instrument : GC2
Sample Name: 110309 4ME

Custody Records

NEW ENGLAND TESTING LABORATORY, INC. 1254 Douglas Avenue North Providence, RI 02904

CHAIN OF CUSTODY RECORD

R1103-09

	1000 100 100 100 100 100 100 100 100 10	POLICE POLICE REMARKS	XXXXX - BILET, A41, Brian S.	11 11 - DAMPTOCT ATAN: MOTIO	0-21-11 CD 2x TAT (bx 11-12-0	U. J. Trild (h may tog yms					Relinquished by: (Signature) Date/Time Received by: (Signature)	3	Relinquished by: (Signature) Date/Time Received by: (Signature)	Desertine Remarks amples properly preserved all 13/db 11:03 except sample MW-1 for EPH,	yo'C PH adjusted to CZ
Hess Esq ty	5	G TAINERS R STATION LOCATION	, p		-7	7					Mate/Time Received by: (Signature)	"The spen was creat	Date/Time Received by: (Signature)	Date/Time Received for Laboratory by:	7
PROJ. NO PROJECT NAME	CLIENT (1)	SAMPLE DATE TIME O I.D.	MA-1 11-1/2 PLYF /	0361 1 2-1		> 85 C EL					Relinquished by: (Signature)		Relinquished by: (Signature)	Relinquished by: (Signature)	

04/20/07

Technical Report for

EnviroTrac

HESS:946 Washington, 144/150 Mendon Rd. Attleboro MA

Accutest Job Number: M63867

Sampling Date: 04/05/07

Report to:

EnviroTrac

patrickc@envirotrac.com

ATTN: Patrick Corcoran

Total number of pages in report: 18

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Reza Fand Lab Director

Certifications: MA (M-MA136) CT (PH-0109) NH (250204) RI (00071) ME (MA136) FL (E87579) NY (23346) NJ (MA926) NAVY USACE

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Sections:

_

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: M63867-1: MW-1	5
Section 3: Misc. Forms	13
3.1: Chain of Custody	14

Sample Summary

EnviroTrac

HESS:946 Washington, 144/150 Mendon Rd. Attleboro MA

Job No: M63867

Sample	Collected	l	M	atrix	Client
Number	Date	Time By	Received Co	ode Type	Sample ID
M63867-1	04/05/07	12:00 SPK	04/05/07 A	Q Ground Water	MW-1

Sample Results

Report of Analysis

Page 1 of 2

Client Sample ID: MW-1

 Lab Sample ID:
 M63867-1
 Date Sampled:
 04/05/07

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/07

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: HESS: 946 Washington, 144/150 Mendon Rd. Attleboro MA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1F28137.D104/16/07PN04/12/07OP13335MSF1357

Run #2

Initial Volume Final Volume

Run #1 980 ml 1.0 ml

Run #2

ABN PPL List

CAS No.	Compound	Result	RL	Units	Q
95-57-8	2-Chlorophenol	ND	5.1	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	10	ug/l	
120-83-2	2,4-Dichlorophenol	ND	10	ug/l	
105-67-9	2,4-Dimethylphenol	ND	10	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	ug/l	
88-75-5	2-Nitrophenol	ND	10	ug/l	
100-02-7	4-Nitrophenol	ND	20	ug/l	
87-86-5	Pentachlorophenol	ND	10	ug/l	
108-95-2	Phenol	ND	5.1	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	10	ug/l	
83-32-9	Acenaphthene	ND	5.1	ug/l	
208-96-8	Acenaphthylene	ND	5.1	ug/l	
120-12-7	Anthracene	ND	5.1	ug/l	
92-87-5	Benzidine	ND	20	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.1	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.1	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.1	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.1	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.1	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.1	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.1	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.1	ug/l	
106-47-8	4-Chloroaniline	ND	10	ug/l	
218-01-9	Chrysene	ND	5.1	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.1	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.1	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.1	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.1	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.1	ug/l	
122-66-7	1,2-Diphenylhydrazine	ND	5.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.1	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

 Client Sample ID:
 MW-1

 Lab Sample ID:
 M63867-1
 Date Sampled:
 04/05/07

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/07

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

 Project:
 HESS:946 Washington, 144/150 Mendon Rd. Attleboro MA

ABN PPL List

CAS No.	Compound	Result	RL	Units Q
106-46-7	1,4-Dichlorobenzene	ND	5.1	ug/l
121-14-2	2,4-Dinitrotoluene	ND	10	ug/l
606-20-2	2,6-Dinitrotoluene	ND	10	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	5.1	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	5.1	ug/l
84-74-2	Di-n-butyl phthalate	ND	5.1	ug/l
117-84-0	Di-n-octyl phthalate	ND	5.1	ug/l
84-66-2	Diethyl phthalate	ND	5.1	ug/l
131-11-3	Dimethyl phthalate	ND	5.1	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.1	ug/l
206-44-0	Fluoranthene	ND	5.1	ug/l
86-73-7	Fluorene	ND	5.1	ug/l
118-74-1	Hexachlorobenzene	ND	5.1	ug/l
87-68-3	Hexachlorobutadiene	ND	5.1	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	ug/l
67-72-1	Hexachloroethane	ND	5.1	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.1	ug/l
78-59-1	Isophorone	ND	5.1	ug/l
91-20-3	Naphthalene	ND	5.1	ug/l
98-95-3	Nitrobenzene	ND	5.1	ug/l
62-75-9	n-Nitrosodimethylamine	ND	5.1	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.1	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.1	ug/l
85-01-8	Phenanthrene	ND	5.1	ug/l
129-00-0	Pyrene	ND	5.1	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.1	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
367-12-4	2-Fluorophenol	62%		10-110%
4165-62-2	Phenol-d5	46%		10-110%
118-79-6	2,4,6-Tribromophenol	97%		10-110%
4165-60-0	Nitrobenzene-d5	80%		30-124%
321-60-8	2-Fluorobiphenyl	80%		30-120%
1718-51-0	Terphenyl-d14	90%		30-120%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-1

 Lab Sample ID:
 M63867-1
 Date Sampled:
 04/05/07

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/07

 Method:
 SW846 8011
 SW846 8011
 Percent Solids:
 n/a

Project: HESS:946 Washington, 144/150 Mendon Rd. Attleboro MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 BB13656.D 1 04/14/07 SL 04/13/07 OP13345 GBB570

Run #2

Initial Volume Final Volume

Run #1 33.9 ml 2.0 ml

Run #2

CAS No. Compound RLUnits Q Result 106-93-4 1,2-Dibromoethane ND 0.015 ug/1 CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 460-00-4 99% 36-173% Bromofluorobenzene (S) 460-00-4 Bromofluorobenzene (S) 96% 36-173%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-1

 Lab Sample ID:
 M63867-1
 Date Sampled:
 04/05/07

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/07

 Method:
 SW846 8015
 Percent Solids:
 n/a

Project: HESS:946 Washington, 144/150 Mendon Rd. Attleboro MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 BD12592.D 1 04/06/07 AF n/a n/a GBD617

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No. Compound Result RL Units Q

TPH-GRO (VOA) 0.421 0.10 mg/l

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

615-59-8 2,5-Dibromotoluene 104% 44-134%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-1

Lab Sample ID: M63867-1 **Date Sampled:** 04/05/07 Matrix: AQ - Ground Water **Date Received:** 04/05/07 Method: SW846 8082 SW846 3510C Percent Solids: n/a

HESS:946 Washington, 144/150 Mendon Rd. Attleboro MA **Project:**

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** 04/06/07 Run #1 EF54383.D 1 04/10/07 SLOP13308 **GEF2663**

Run #2

Final Volume Initial Volume

Run #1 1000 ml 5.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units	Q
10:-111	1 1016				
12674-11-2	Aroclor 1016	ND	0.25	ug/l	
11104-28-2	Aroclor 1221	ND	0.25	ug/l	
11141-16-5	Aroclor 1232	ND	0.25	ug/l	
53469-21-9	Aroclor 1242	ND	0.25	ug/l	
12672-29-6	Aroclor 1248	ND	0.25	ug/l	
11097-69-1	Aroclor 1254	ND	0.25	ug/l	
11096-82-5	Aroclor 1260	ND	0.25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	5
877-09-8	Tetrachloro-m-xylene	105%		35-136	5%
877-09-8	Tetrachloro-m-xylene	120%		35-136	5%
2051-24-3	Decachlorobiphenyl	101%		30-143	3%
2051-24-3	Decachlorobiphenyl	92%		30-143	3%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-1

 Lab Sample ID:
 M63867-1
 Date Sampled:
 04/05/07

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/07

 Method:
 SW846-8015
 SW846-3510C
 Percent Solids:
 n/a

Project: HESS:946 Washington, 144/150 Mendon Rd. Attleboro MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GH49268.D 1 04/12/07 DG 04/11/07 OP13328 GGH3552

Run #2

Initial Volume Final Volume

Run #1 900 ml 1.0 ml

Run #2

CAS No. Compound Result RL Units Q

TPH-DRO (Semi-VOA) 0.457 0.22 mg/l

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

3386-33-2 1-Chlorooctadecane 92% 37-140%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-1

Lab Sample ID:M63867-1Date Sampled:04/05/07Matrix:AQ - Ground WaterDate Received:04/05/07Percent Solids:n/a

Project: HESS: 946 Washington, 144/150 Mendon Rd. Attleboro MA

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
		6.0	/1		04/06/07	04/00/07	1	
Antimony	< 6.0	6.0	ug/l	1	04/06/07	04/09/07 PY	SW846 6010B ¹	SW846 3010A ³
Arsenic	37.0	10	ug/l	1	04/06/07	04/09/07 PY	SW846 6010B ¹	SW846 3010A ³
Cadmium	< 4.0	4.0	ug/l	1	04/06/07	04/09/07 PY	SW846 6010B ¹	SW846 3010A ³
Chromium	235	10	ug/l	1	04/06/07	04/09/07 PY	SW846 6010B ¹	SW846 3010A ³
Copper	373	25	ug/l	1	04/06/07	04/09/07 PY	SW846 6010B ¹	SW846 3010A ³
Iron	212000	100	ug/l	1	04/06/07	04/09/07 PY	SW846 6010B ¹	SW846 3010A ³
Lead	526	5.0	ug/l	1	04/06/07	04/09/07 PY	SW846 6010B ¹	SW846 3010A ³
Mercury	1.5	0.20	ug/l	1	04/10/07	04/11/07 MA	SW846 7470A ²	SW846 7470A ⁴
Nickel	158	40	ug/l	1	04/06/07	04/09/07 PY	SW846 6010B ¹	SW846 3010A ³
Selenium	< 10	10	ug/l	1	04/06/07	04/09/07 PY	SW846 6010B ¹	SW846 3010A ³
Silver	< 5.0	5.0	ug/l	1	04/06/07	04/09/07 PY	SW846 6010B ¹	SW846 3010A ³
Zinc	1030	20	ug/l	1	04/06/07	04/09/07 PY	SW846 6010B ¹	SW846 3010A ³

(1) Instrument QC Batch: MA7979(2) Instrument QC Batch: MA7983(3) Prep QC Batch: MP10139(4) Prep QC Batch: MP10157

Page 1 of 1

Client Sample ID: MW-1

Lab Sample ID:M63867-1Date Sampled:04/05/07Matrix:AQ - Ground WaterDate Received:04/05/07Percent Solids:n/a

Project: HESS: 946 Washington, 144/150 Mendon Rd. Attleboro MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	04/05/07 18:05	MA	SW846 7196A
Cyanide	< 0.010	0.010	mg/l	1	04/10/07 11:22	MA	EPA 335.3
Solids, Total Suspended	14900	40	mg/l	10	04/10/07	BF	EPA 160.2
Total Residual Chlorine	< 0.050	0.050	mg/l	1	04/05/07 16:10	NJ	EPA 330.4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

				CH	ATN	τ Λ 1		ĊΤ	TC	17	·^	T	X.	7	_								
ZAC	CCUTES	3T.		CH 49	AIN 05 TECHNOI	LOGY CE	NTER	WEST	٦٦	UILD	OING (ONE	I		Ĺ	CCUTI	ST JC)B#:	M	6	38,	67	
	Laborator					MARLBOF 08-481-62					53				1^	CCUTI	ST QI	JOTE	#:				
	CLIENT INFORM	IATION				ILITY INF									ANA	LYTIC	AL II	NFOR	MAT	ON		T	MATRIX CODES
1406	Providence rwood M un Kennen 10: 781769-	May /:	50/te 2100 062 ZIP	PROJECT I	NO.					Né.	nder	- - -	17RC ~	,	hthylotes/Phenols	200	100 P	2	Chromium	16, Cu Zn Fe Ni)			DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL LIQ - OTHER LIQUID SOL - OTHER
ACCUTEST					LLECTION		,		PRE	_	VATIO	-	12	3	9	I C	1/2		√√	166			SOLID
SAMPLE #	FIELD ID / POIN	IT OF COLLECTI	ON	DATE	TIME	SAMPLED BY:	MATRIX	# OF BOTTLES	P P	HINOS	H2SQ4	N. A.	H		83	120	7/2	I	<u>}_</u>	Aicta		h	AB USE ONLY
	MW-/			4/5/07	1206	SPK	GO	12	XX	X	X	X	X	X	人				2	K			
[DATA TURNAROUND IN	FORMATION			DATA DELI	VERABLI	E INFO	RMAT	ION	7		1				1	COI	MME	NTS/F	EMA	RKS	+	
			ERCIAL "B' ELIVERAB FORMS	LE				. I	_		5	F,	12c, 3D5, 13B										
RELINGUISHED	SAM	PLE CUSTODY	MUST BE	DOCUMENTE	D BELOW I				CHA	ANGI	E POS				LUDIN				IVER	Υ			
Fun	19	TE TIME: 15/07-1345	1. Type	me	enez	2.	QUISHED						E TIME			REÇEN 2.							
3.	RELINQUISHED BY: DATE TIME: RECEIVED B			γ: —	J	4.	QUISHED	BY:				DAT	DATE TIME: RECEIVED BY: 4.										

SEAL #

DATE TIME:

RELINQUISHED BY:

RECEIVED BY

5.

M63867: Chain of Custody

PRESERVE WHERE APPLICABLE

Page 1 of 5

TEMPERATUBE 2. Š C

Subject: RE: Additional metal analyses required - 946 Washington St-144/150 Mendon Rd, Attleboro...

Sean,

This is ok w ecan do with the 500 ml the additional metals.

is this a Hess project?

Thanks,

Reza

From: Sean Kennedy [mailto:seank@envirotrac.com]
Sent: Thursday, April 05, 2007 3:22 PM
To: Reza Tand
Subject: Additional metal analyses required - 946 Washington St-144/150 Mendon Rd, Attleboro...
Importance: High

Reza,

I dropped off the hexavalent chromium sample earlier today (along with others). There was a total metals analysis requested consisting of Sb, Cu, Zn, Fe, and Ni in a plastic 500 mL bottle preserved with HNO3. I also need the following total metals analyzed along with the five I requested on the chain. They are: As, Cd, Cr, Pb, Hg, Se, and Ag. Is the 500 mL sample enough to run the extra metals? Please let me know as soon as you can. If you are confused about the above, please give me a call.

Thank you,

Sean P. Kennedy, P.G.

EnviroTrac Ltd.

Project Manager

1400 Providence Highway, Suite 2100

Norwood, MA 02062

P: 781.769.5005 F: 781-769-9345

Email: seank@envirotrac.com

M63867: Chain of Custody Page 2 of 5

_	
Φ	
ñ	
m	
ш	
\rightarrow	
£	
75	
~	

From: Sent: To: Subject:

Reza Tand Thursday, April 05, 2007 3:37 PM Betty Baer FW: Additional metal analyses required - 946 Washington St-144/150 Mendon Rd, Attleboro...

FY

From: Sean Kennedy [mailto:seank@envirotrac.com]
Sent: Thursday, April 05, 2007 3:35 PM
To: Reza Tand
Subject: RE: Additional metal analyses required - 946 Washington St-144/150 Mendon Rd, Attleboro...

Yes, bill Mike Matri at Hess direct. Reference MA020 (no station # available yet).

From: Reza Tand [mailto:rezat@accutest.com] Sent: Thursday, April 05, 2007 3:30 PM

To: Sean Kennedy Subject: RE: Additional metal analyses required - 946 Washington St-144/150 Mendon Rd, Attleboro...

ok, are we billing HESS ?what is the station #?

Reza

From: Sean Kennedy [mailto:seank@envirotrac.com]
Sent: Thursday, April 05, 2007 3:29 PM

To: Reza Tand
Subject: RE: Additional metal analyses required - 946 Washington St-144/150 Mendon Rd, Attleboro...

This is a Hess Real Estate site. Sorry for the confusion and thank you for the quick response.

Sean

M63867: Chain of Custody Page 3 of 5

From: Reza Tand [mailto:rezat@accutest.com]
Sent: Thursday, April 05, 2007 3:28 PM
To: Sean Kennedy

_	
Φ	
a	
æ	
~	
\leftarrow	
ᇷ	
m	
_	

Sean Kennedy [seank@envirotrac.com] Thursday, April 05, 2007 5:28 PM Betty Baer RE: Hess Attieboro (M63867) From: Sent: To: Subject:

Betty,

Sorry about that - please do not run the trip blank.

Sean

From: Betty Baer [mailto:bettyb@accutest.com] Sent: Thursday, April 05, 2007 5:26 PM

To: Sean Kennedy Subject: Hess Attleboro (M63867)

We received a Chain for this site 4/5/07, a Trip Blank for EDB analysis was received but not listed on Chain. Do you want us to run this. Please get back to me.

Betty

Betty Baer

495 Technology Center West, Building #1 Accutest Laboratories

Mariboro, MA 01752

Phone (508) 481- 6200 Fax (508) 481-7753

Accutest -- "50 Years of Excellence" -- 1956-2006

M63867: Chain of Custody Page 4 of 5

1.6	VO.
	e)
in	
ונט	<u>-</u>
i iii	0
ш	4.4
	65
	k
_	0
	ما
()	63
u	
75	
u	
_7	
210	
開報 乙分	
	•

Issue Date: 4/5/c7

Sample Problem Notice

Initials: 6 Job # Mb 3867	UOC Vials Have Headspace (Macro-bubbles) Def Bottles Received but analysis Not Requested on Chain of Custody No Bottles Received For Analyses Requested Unclear Filtering Instructions Unclear Compositing Instructions	☐ % Solids Jar Not Received
To: Client Services From: Sample Management Client: France Hac Project:	Problem: Trip Blank Not Received Temperature Criteria (2-6 C) Not Met Ee present In No Ice Present In Frozen Sample Received Out of Holding Time Sample Received Broken Insufficient Volume For Analysis	Preserved

(-2) 2-4" of yeas with sodium thiosolfate received	as a trip blook for EDB not listed on C.O.C.			
Description (-2)	0			

M63867: Chain of Custody

Page 5 of 5

QA147-01 (7/20/06)

ATTACHMENT D

Index by State and City

National Register Information System

03/27/2007 13:28:51

No filter

Include filter in navigation

Row	STATE >	COUNTY	RESOURCE NAME	ADDRESS	CITY Þ	LISTED >	MULTIPLE
1	MA	Bristol	Blackinton Houses and Park	N. Main St.	Attleboro	1979-04-20	
2	MA	Bristol	Capron House	42 North Ave.	Attleboro	1978-07-21	
3	MA	Bristol	East Attleborough Academy	28 Sanford St.	Attleboro	1985-04-04	
4	MA	Bristol	First Parsonage for Second East Parish Church	41 S. Main St.	Attleboro	1980-04-02	
5	MA	Bristol	Hebronville Mill Historic District	Knight Ave., Read and Phillip Sts.	Attleboro	1984-05-17	
6	MA	Bristol	Makepeace, D. E., Company	46 Pine St.	Attleboro	1985-07-18	
7	MA	Bristol	Northbound and Southbound Stations	1 and 3 Mill St.	Attleboro	1989-01-05	
8	MA	Bristol	Robinson, Capt. Joel, House	111 Rocklawn Ave.	Attleboro	1978-11-20	
9	MA	Bristol	Sadler, Herbert A., House	574 Newport Ave.	Attleboro	1982-10-21	
10	MA	Bristol	US Post OfficeAttleboro Main	75 Park St.	Attleboro	1987-10-19	

Page 1

1 of 1 03/27/2007 14:29

No filter

Include filter in navigation [

Row	STATE	COUNTY	RESOURCE NAME	ADDRESS	CITY :	LISTED	MULTIPLE
1	RI	Providence	Central Falls Congregational Church	376 High St.	Central Falls	1976-07-12	Central Falls MRA (AD)
2	RI	Providence	Central Falls Mill Historic District	Between Roosevelt Avenue and Blackstone River	Central Falls	1976-07-02	Central Falls MRA
3	RI	Providence	Central Street School	379 Central St.	Central Falls	1979-04-06	Central Falls MRA
4	RI	Providence	Conant, Samuel B., House	104 Clay St.	Central Falls	1979-04-06	Central Falls MRA
5	RI	Providence	Fales, David G., House	476 High St.	Central Falls	1979-04-06	Central Falls MRA
6	RI	Providence	Greene, Benjamin F., House	85 Cross St.	Central Falls	1979-04-06	Central Falls MRA
7	RI	Providence	Holy Trinity Church Complex	134 Fuller Ave.	Central Falls	1978-01-03	Central Falls MRA (AD)
8	RI	Providence	Jenks Park & Cogswell Tower	Adjoining 580 Broad St.	Central Falls	1979-04-06	Central Falls MRA (AD)
9	RI	Providence	South Central Falls Historic District	Roughly bounded by Central Falls—Pawtucket boundary, Rand, Summit, Dexter and Broad Sts.	Central Falls	1991-01-31	Central Falls MRA
10	RI	Providence	St. Matthew's Church	Dexter & W. Hunt Sts.	Central Falls	1979-04-06	Central Falls MRA

Index by State and City National Register Information System

No filter

Include filter in navigation \square

Row	STATE	COUNTY	RESOURCE NAME	ADDRESS	CITY 0	LISTED	MULTIPLE
1	RI	Providence	Arnold Mills Historic District	E of Cumberland Hill at Sneech Pond, Attleboro, and Abbott Run Valley Rds.	Cumberland	1978-12-28	
2	RI	Providence	Ashton Historic District	Roughly Mendon, Scott, and Old Angell Rds., Store Hill Rd., Front and Middle Sts.	Cumberland	1984-11-01	
3	RI	Providence	BurlingameNoon House	3261 Mendon Rd.	Cumberland	1974-02-15	and the second to the second t
4	RI	Providence	Cole, John, Farm	E of Manville on Reservoir Rd.	Cumberland	1977-08-16	
5	RI	Providence	Furnace Carolina Site	Address Restricted	Cumberland	1993-05-10	27
6	RI	Providence	Jillson, Luke, House	2510 Mendon Rd.	Cumberland	1982-08-12	
7	RI	Providence	St. Joseph's Church Complex	1303–1317 Mendon Rd.	Cumberland	1982-08-12	A CONTRACTOR OF THE PROPERTY O
8	RI	Providence	Tower, Lewis, House	2199 Mendon Rd.	Cumberland	1982-08-30	2 A A
9	RI	Providence	TowerFlagg Barn Complex	100 Abbott Run Valley Rd.	Cumberland	1998-05-20	
10	RI	Providence	Whipple-Jenckes House	2500 Diamond Hill Rd.	Cumberland	1992-11-05	

Page 1

No	filter
710	milei

Include filter in navigation [

Row	STATE	COUNTY	RESOURCE NAME	ADDRESS	CITY	LISTED	MULTIPLE
I	RI	Providence	Adams, John E., House	11 Allen Ave.	Pawtucket	1983-11-18	Pawtucket MRA
2	RI	Providence	Art's Auto	57 Lonsdale Ave.	Pawtucket	1978-12-15	
3	RI	Providence	Bridge Mill Power Plant	25 Roosevelt Ave.	Pawtucket	1983-11-18	Pawtucket MRA
4	RI	Providence	Burnham, G.A., House	17 Nickerson St.	Pawtucket	1983-11-18	Pawtucket MRA
5	RI	Providence	ChildsBrown House	172 Pine St.	Pawtucket	1983-11-18	Pawtucket MRA
6	RI	Providence	Church Hill Industrial District	Roughly bounded by S. Union, Pine, Baley, Commerce, Main, and Hill Sts.	Pawtucket	1982-08-12	
7	RI	Providence	Coliyer Monument	Mineral Spring Park	Pawtucket	1983-11-18	Pawtucket MRA
8	RI	Providence	Conant Thread-Coats & Clark Mill Complex District	Roughly bounded by Lonsdale Ave., Pine, Conant, Carpenter, and Rand Sts.	Pawtucket	1983-11-18	Pawtucket MRA
9	RI	Providence	Crandali, Lorenzo, House	221 High St.	Pawtucket	1984-12-10	
10	RI	Providence	Division Street Bridge	Division St. at Seekonk River	Pawtucket	1983-11-18	Pawtucket MRA

Massachusetts Cultural Resource Information System MACRIS

Macris Search Results

Search Criteria: Towns: Attleboro

Place: South Attleboro

ResourceType: Area, Burial Ground, Building, Object, Structure

Inv. No.	Property Name	Street	Town	Year
ATT.532		102 Sycamore Ave	Attleboro	1915
ATT.490		368 Newport Ave	Attleboro	1905
ATT.523		25 Newport Ave	Attleboro	1895
ATT.534		73 Gardner Ave	Attleboro	1905
ATT.545		58 Turner St	Attleboro	1905
ATT.525		20 Park Pl	Attleboro	1915
ATT.536		148 Hackett Ave	Attleboro	1912
ATT.527		386 Washington St	Attleboro	1755
ATT.518		336 Read St	Attleboro	1718
ATT.540		44 West Carpenter St	Attleboro	1915
ATT.544		41 Turner St	Attleboro	1925
ATT.535		85 Laurier Ave	Attleboro	1925
ATT.515		782 Newport Ave	Attleboro	1820
ATT.541		45 West Carpenter St	Attleboro	1915
ATT.580		87 Laurier Ave	Attleboro	1925
ATT.915	Attlboro Soldiers' Monument	County St	Attleboro	1903
ATT.520	Attleboro District Schoolhouse #10	510 Read St	Attleboro	1810
ATT.510	Attleboro District Schoolhouse #17	Roy Ave	Attleboro	1846
ATT.502	Attleboro Hose Company #4 Fire Station	532 Newport Ave	Attleboro	1920

Tuesday, March 27, 2007 Page 1 of 5

Inv. No.	Property Name	Street	Town	Year	
ATT.484	Attleboro Main Pumping Station	West St	Attleboro	1892	
ATT.538	Attleboro Old Toll House	181 Mendon Rd	Attleboro	1732	
ATT.916	Attleboro Revolutionary War Monument	County St	Attleboro	1912	
ATT.917	Attleboro Spanish - American War Monument	County St	Attleboro	1930	
ATT.919	Attleboro Vietnam Memorial	County St	Attleboro	1968	
ATT.480	Bellon, Albert House	964 West St	Attleboro	1914	
ATT.533	Brown, Elisha House	81 Brown St	Attleboro	1780	
ATT.489	Bruce, John House	352 Newport Ave	Attleboro	1875	
ATT.947	Capron Park	County St	Attleboro	1901	
ATT.U	Capron Park		Attleboro		
ATT.965	Capron Park - Anderson, Edward L. Rose Garden	County St	Attleboro	1955	
ATT.961	Capron Park - Capron, Harford A. Zoo	County St	Attleboro	1937	
ATT.411	Capron Park - Casino - Refreshment Stand	County St	Attleboro	1902	
ATT.964	Capron Park - Grand Army Avenue	County St	Attleboro	1923	
ATT.960	Capron Park - Lily Pond Fountain	County St	Attleboro	1935	
ATT.922	Capron Park - Newell Shelter	County St	Attleboro	1911	
ATT.966	Capron Park - O'Connell Memorial Baseball Field	County St	Attleboro	1958	
ATT.967	Capron Park - O'Connell, Dan Memorial Plaque	County St	Attleboro	1958	
ATT.591	Capron Park - Stone Memorial Tropical Rainforest	County St	Attleboro	1963	
ATT.973	Capron Park - Sweet, Frank R. Memorial Forest	County St	Attleboro	1953	
ATT.962	Capron Park - Tropical Rainforest Animal Fountain	County St	Attleboro	1890	
ATT.959	Capron Park - Wading Pool	County St	Attleboro	1916	
ATT.958	Capron Park - Wolfenden Fountain	County St	Attleboro	1910	
ATT.963	Capron Park - World War I Veterans Memorial Avenue	County St	Attleboro	1919	
ATT.920	Capron Park Bandstand	County St	Attleboro	1908	
ATT.590	Capron Park Bath House	County St	Attleboro	1916	
ATT.921	Capron Park Memorial Gateway	County St	Attleboro	1937	
Tuesday, Marcl	Tuesday, March 27, 2007				

Inv. No.	Property Name	Street	Town	Year
A.T.T. 0.T.O.			A	4004
ATT.972	Capron Park Rock Garden	County St	Attleboro	1931
ATT.593	Carpon, Harford A. Park Zoo Building	County St	Attleboro	1937
ATT.509	Cotton's Grocery Store	609 Newport Ave	Attleboro	1905
ATT.501	Coupe, William and Company Tannery Worker Housing	478 Newport Ave	Attleboro	1865
ATT.572	Coupe, William and Company Tannery Worker Housing	490 Newport Ave	Attleboro	1865
ATT.574	Coupe, William and Company Tannery Worker Housing	496 Newport Ave	Attleboro	1865
ATT.571	Coupe, William and Company Tannery Worker Housing	482 Newport Ave	Attleboro	1865
ATT.573	Coupe, William and Company Tannery Worker Housing	494 Newport Ave	Attleboro	1865
ATT.543	Crown Manufacturing Company - Building #1	192 Turner St	Attleboro	1911
ATT.529	Delany, Lyons F. H. House	205 Highland Ave	Attleboro	1909
ATT.494	Draper, George L Tiffany, E. P. House	400 Newport Ave	Attleboro	1865
ATT.482	Field, J Looby, P. House	1419 West St	Attleboro	1760
ATT.488	Fox, Michael E. House	1544 West St	Attleboro	1906
ATT.526	Fuller Memorial Hospital	231 Washington St	Attleboro	1937
ATT.925	Garland - Muccio Square Monument Memorial Stone	Read St	Attleboro	1955
ATT.500	Guild, Ebenezer House	464 Newport Ave	Attleboro	1795
ATT.542	H. and B. American Machine Company Building	Turner St	Attleboro	1895
ATT.521	Hunt, Edward W. House	535 Read St	Attleboro	1785
ATT.522	Ide, Jacob House	636 Read St	Attleboro	1825
ATT.479	Ide, John and Amos House	865 West St	Attleboro	1750
ATT.508	Jillson, Clementine M. House	595-597 Newport Ave	Attleboro	1870
ATT.513	Johnson, Hiram M. House	660 Newport Ave	Attleboro	1905
ATT.528	Jones, Fred W. House	100 Highland Ave	Attleboro	1904
ATT.516	Lincoln School	Washington St	Attleboro	1926
ATT.531	Monast, Louis House	353 Highland Ave	Attleboro	1915
ATT.801	Newell Cemetery	West St	Attleboro	1715

Tuesday, March 27, 2007

Inv. No.	Property Name	Street	Town	Year	
ATT.E	Newport Avenue Area		Attleboro		
ATT.T	Newport Avenue Streetscape		Attleboro		
ATT.514	Orr, Caleb A. House	754 Newport Ave	Attleboro	1855	
ATT.492	Orr, George W. House	376 Newport Ave	Attleboro	1905	
ATT.485	Orr, James Bleachery and Dye House	1476 West St	Attleboro	1827	
ATT.487	Orr, James House	1536 West St	Attleboro	1895	
ATT.491	Orr, James House	369 Newport Ave	Attleboro	1875	
ATT.486	Orr, James House	1526 West St	Attleboro	1897	
ATT.517	Read House	334 Read St	Attleboro	1818	
ATT.519	Richardson, W. C. House	432 Read St	Attleboro	1855	
ATT.498	Richaud, Joseph House	458 Newport Ave	Attleboro	1794	
ATT.524	Robinson, Ashabel H. House	135 Cumberland Ave	Attleboro	1820	
ATT.481	Robinson, Capt. Joel House	111 Rocklawn Ave	Attleboro	1790	
ATT.497	Robinson, Lewis F. House	434 Newport Ave	Attleboro	1855	
ATT.512	Roy, Narcisse House	646 Newport Ave	Attleboro	1875	
ATT.576	Sadler Brothers Jewelry Company Worker Housing	579 Newport Ave	Attleboro	1895	
ATT.504	Sadler Brothers Jewelry Company Worker Housing	550 Newport Ave	Attleboro	1910	
ATT.506	Sadler Brothers Jewelry Company Worker Housing	569 Newport Ave	Attleboro	1895	
ATT.575	Sadler Brothers Jewelry Company Worker Housing	558 Newport Ave	Attleboro	1910	
ATT.505	Sadler, George W. House	553 Newport Ave	Attleboro	1836	
ATT.507	Sadler, Herbert Austin House	574 Newport Ave	Attleboro	1906	
ATT.926	South Attleboro World War II Honor Roll Monument	Newport Ave	Attleboro	1920	
ATT.511	Stanley House	637 Newport Ave	Attleboro	1726	
ATT.918	Sweet, Frank Royden Memorial Forest Monument	County St	Attleboro	1958	
ATT.530	Tingley, Eugene A. House	212 Highland Ave	Attleboro	1912	
ATT.493	Tingley, Thomas House	389 Newport Ave	Attleboro	1723	
ATT.537	Washington School	Washington St	Attleboro	1909	
Tuesday, Marc	Tuesday, March 27, 2007 Page 4 of 5				

Inv. No.	Property Name	Street	Town	Year
ATT.954	- Washington Street Bridge over Conneil	Washington Ct	Attleboro	1027
ATT.954 ATT.499	Washington Street Bridge over Conrail Wellman, David House	Washington St 461 Newport Ave	Attleboro	1937 1835
ATT.499 ATT.495	White, Damon - Coupe, William House	409-411 Newport Ave	Attleboro	1829
ATT.493	White, Damon A. House	543 Newport Ave	Attleboro	1905
ATT.496	Wilbar, Charles A. House	429-431 Newport Ave	Attleboro	1855
ATT.539	Woodworth, Roy C. House	1 Brettonwoods Dr	Attleboro	1925

Tuesday, March 27, 2007 Page 5 of 5